miketipping[.com]

Fast Marginal Likelihood Maximisation for
Sparse Bayesian Models

Michael E. Tipping and Anita C. Faul
Microsoft Research, Cambridge, U.K.

Published as: “Fast marginal likelihood maximisation for sparse Bayesian models.” In C. M. Bishop
and B. J. Frey (Eds.), Proceedings of the Ninth International Workshop on Atrtificial
Intelligence and Statistics, Key West, FL, Jan 3-6.

Year of publication: 2003

This version typeset: June 26, 2006

Available from: http://www.miketipping.com/papers.htm

Correspondence: mail@miketipping.com

Abstract The ‘sparse Bayesian’ modelling approach, as exemplified by the ‘relevance vector machine’,
enables sparse classification and regression functions to be obtained by linearly-weighting
a small number of fixed basis functions from a large dictionary of potential candidates.
Such a model conveys a number of advantages over the related and very popular ‘support
vector machine’, but the necessary ‘training’ procedure — optimisation of the marginal
likelihood function — is typically much slower. We describe a new and highly accelerated
algorithm which exploits recently-elucidated properties of the marginal likelihood function
to enable maximisation via a principled and efficient sequential addition and deletion of
candidate basis functions.

1 Introduction

It is an understatement to say that there has been considerable focus on ‘sparse’ models in machine
learning in recent years. The ‘support vector machine’ (SVM) [2, 12], and other related kernel
approaches, have generated great interest.

Typically, a sparse model would initially take the form:

M
y(X) = Z wm¢m(x)a (1)

where y(x) may be an intended approximation to a real-valued function of interest (i.e. regression)
or a discriminant function (i.e. classification). Although the model is linear in the parameters, it
may still be highly flexible as the size of the basis set, M, may be very large. Given a sample
of N corresponding ‘training’ pairs {x,,t,})_;, the objective is to find values for the weights
w = (wy,...wpr)" such that y(x) generalises well to new data yet only a few elements of w are
1ON-Z€ro.

The notion of setting weights to zero (as distinct from constraining them, say, to small values), is
a compelling one in terms of controlling model complexity and avoiding over-fitting. A secondary
feature is that inducing sparsity can be a highly effective method to control the computational
characteristics of a resulting model. This can hopefully be exploited to an extent in the training
procedure, but is typically much more valuable when the model is to be deployed in a practical

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

scenario where CPU and memory resources may be significantly limited. Relevant examples would
be an implementation of a handwriting recogniser on a hand-held computer or of an “Al engine”
in a video game.

In the SVM, the model is implicitly defined such that M = N and ¢, (x) = K(x,X,), with
K(-,-) a positive definite kernel function and x,, an example from the training set. (Typically, a
‘bias’ would also be used.) As well as this definitional constraint, there are a number of other well-
documented limitations of the SVM paradigm, most of which, such as the absence of posterior class
probability estimates in classification, stem from there being no associated probabilistic model.

To overcome this deficiency, some researchers have proposed modifications to the SVM framework
itself [9, 5]. An alternative perspective is to consider the linear model (1) directly within a ‘sparse
Bayesian’ framework, which leads to a model such as the ‘relevance vector machine’ (RVM) [10,
11]. This approach is summarised in Section 2, and is able to utilise more flexible candidate
models, which are typically much sparser, offers probabilistic predictions and avoids the need to
set additional regularisation parameters. However, one drawback of this approach is that the run
time for the existing training algorithm scales approximately in the cube of the number of basis
functions! preventing practical application of the algorithm to large data sets. Conversely, there
now exist some very effective algorithms for efficiently training SVMs on large-scale problems [8, 4].

In this paper we present an accelerated training algorithm for sparse Bayesian models. Specifi-
cally, we exploit a recent result concerning the properties of the marginal likelihood function [3],
discussed in Section 3, to derive a ‘constructive’ method for maximisation thereof. The original
RVM algorithm [10] commenced with all the M basis functions included in the model, and updated
hyperparameters iteratively. As a consequence of these updates, some basis functions would be
‘pruned’ and the algorithm would accelerate, but nevertheless the first few iterations would still
require O(M?3) computations. In the algorithm described in Section 4 we initialise with an ‘empty’
model, and sequentially ‘add’ basis functions to increase the marginal likelihood, and also modify
their weightings. Within the same principled framework, we can also increase the objective func-
tion by ‘deleting’ functions which subsequently become redundant. This is an important feature,
as it offsets the inherent ‘greediness’ that is exhibited by other sequential algorithms of this type.

We compared the performance of the method with both the original RVM algorithm, as well as
with that of an SVM implementation, on some examples in Section 5, and summarise in Section
6. Some further implementation details for the algorithm are included in an appendix.

2 Sparse Bayesian Modelling

We describe the sparse Bayesian regression model first, and consider the adjustments required for
classification later.

2.1 Regression

Given a data set {x,,, t, }_; we write the targets as a vector t = (¢1,...,tx)", and express it as the
sum of an approximation vector y = (y(x1),...,y(xn))" and an ‘error’ vector € = (e1,...,en)":
t=y+e,
= ®w + ¢, (2)

1For the RVM, this is equivalent to the number of data points, as in the SVM. Unlike the SVM though, the
sparse Bayesian framework permits use of arbitrarily sized sets of arbitrary basis functions, so computation can be
constrained by explicitly reducing the basis size if so desired.

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

where w is the parameter vector and where ® = [¢; ... ¢p,,] is the N x M ‘design’ matrix whose
columns comprise the complete set of M ‘basis vectors’.

The sparse Bayesian framework makes the conventional assumption that the errors are modelled
probabilistically as independent zero-mean Gaussian, with variance o2: so p(€) = ngl N(€,]0,02).
This is of course equivalent to a mean-squared-error criterion. The parameter o2 can be set in
advance if known but more usually would be estimated from the data. This error model thus
implies a multivariate Gaussian likelihood for the target vector t:

p(tlw,o?) = (27) N2 N exp {—lt;UZz} . (3)

This likelihood function is complemented by a prior over the parameters which takes the form:

M 2
p(wla) = 2m) M2 [aXf2exp (_O‘wm) . (4)
2
m=1
Of note here is the introduction of M independent hyperparameters, a = (s, ..., ap)", each one

individually controlling the strength of the prior over its associated weight. It is this form of prior
that is ultimately responsible for the sparsity properties of the model (for more insight, see [11]).
Given «, the posterior parameter distribution conditioned on the data is given by combining the
likelihood and prior within Bayes’ rule:

p(wlt, o, 0”) = p(t|w, o)p(wla) /p(t|e, o?), (5)
and is Gaussian N (p, X) with
Y= (A+o20T®) p=o %87, (6)

and A defined as diag (o, . . ., apr). Rather than extending the model to include Bayesian inference
over those hyperparameters (which is analytically intractable), a most-probable point estimate ap
may be found via a type-II mazimum likelihood procedure. That is, sparse Bayesian ‘learning’ is
formulated as the (local) maximisation with respect to « of the marginal likelihood?, or equivalently,
its logarithm £(a):

£(@) = log p(t|ev, 0%) = log / p(tlw, 02) p(wla) dw,
1
=3 [Nlog2m +log |C| +t"C™'t], (7)
with
C=0T+®A'®". (8)

A point estimate poyp for the parameters is then obtained by evaluating (6) with o = avp, giving
a final (posterior mean) approximator y = ®uyp. The crucial observation is that typically the
optimal values of many hyperparameters are infinite [11]. From (6) this leads to a parameter poste-
rior infinitely peaked at zero for many weights w,,, with the consequence that p\p correspondingly
comprises very few non-zero elements.

2.2 Classification

Sparse Bayesian classification follows an essentially identical framework as detailed for regression
above, but using a Bernouilli likelihood and a sigmoidal link function to account for the change in
the target quantities. As a consequence, there is an additional approximation step in the algorithm.

2This implicitly assumes a flat hyperprior over log(c), which as well as being a practically convenient choice, is
also pleasingly invariant to the scale of the target quantities. More general hyperpriors are considered in [11, 1].

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

Applying the logistic sigmoid link function o(y) = 1/(1+e7Y) to y(x) and, adopting the Bernoulli
distribution for P(t|x), we write the likelihood as:

N
P(tlw) = [o{y(en; W)} [1 = o {y(xp; w)})' (9)

where, following from the probabilistic specification, the targets t,, € {0,1}.

Unlike the regression case, the weights cannot be integrated out analytically, precluding closed-
form expressions for either the weight posterior p(w|t, &) or the marginal likelihood P(t|a). We
thus utilise the Laplace approximation procedure, as used in [6]:

1. For the current values of «, the the mode of the posterior distribution is found iteratively to
give the ‘most probable’ weights piyp.

Since p(wlt, &) x P(t|w)p(w|a), this is equivalent to finding the maximum, over w, of

log {P(t|w)p(w|a)} =
N

Z [tn IOg Yn + (1 - tn) IOg(l - yn)] - %WTAW7 (10)

n=1

with y, = o{y(x,;w)}. This is a standard procedure, since (10) is a penalised logistic log-
likelihood function, and necessitates iterative maximisation. We used a second-order Newton
method by adapting the efficient ‘iteratively-reweighted least-squares’ algorithm (e.g. [7]) to

2. Laplace’s method is simply a quadratic approximation to the log-posterior around its mode.
The quantity (10) is differentiated twice to give:
VwVwlogp(wlt,), =—(2"B® +A), (11)

where B = diag (51, 52,...,0n) is a diagonal matrix with 8, = o{y(x,)} [1 — o{y(xx)}].
This is then negated and inverted to give the covariance 3 for a Gaussian approximation to
the posterior over weights centred at pyp.

At the mode of p(wlt, o), using (11) and the fact that Vs, 10gp(w|t,a)|“ = 0, we can see we
MP
have effectively locally ‘linearised’ the classification problem around pyp with

= (®"B® +A) !, (12)
e = Z@TBR, (13)

and R
t=®uyp + Bt —y). (14)

These equations are equivalent to the solution to a ‘generalised least squares’ problem. Compared
with (6), it can be seen that the Laplace approximation effectively maps the classification problem
to a regression one with ‘targets’ t and data-dependent (heteroscedastic) noise, with the inverse
noise variance for €, given by 8, = o{y(x,)}[1 — c{y(x,)}]. It will be convenient to utilise this
linearised form in the classification variant of the newly-proposed algorithm.

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

3 Marginal Likelihood Maximisation

The algorithm proposed in this paper is a particular strategy for maximisation of the marginal
likelihood (7), the effectiveness of which is dependent on the properties thereof. We summarise
some key properties here, and greater detail is given in [3].

Considering the dependence of L£(a) on a single hyperparameter oy, ¢ € {1... M}, we can decom-
pose C in (8) as

C=c1+ Z a;ll(ﬁm(ﬁ:n + ai_1¢i¢;'r7
=C_ita;'¢47, (15)

where C_; is C with the contribution of basis vector ¢ removed. Established matrix determinant
and inverse identities may be used to write the terms of interest in L(«) as:

[Cl=|C_il[L1+a; o] CZig,l, (16)
Clp.oTC !
cl= C:,} - —_’@Td)lil_’ . (17)
a; + @; C_i ?;
From this, we can write £(a) as:
1
L(a) = ~3 [N log(27) + log |C_;| +t"C~}t
_ (¢7Cit)?
—loga; +log(ey + @I C L1p,) — ————|,
=L(a)—|—1 log ov; —log(ay + s;) + [
o - 2 & Lo ! o + 8
= Lla_;) + (o), (18)
where for simplification of forthcoming expressions, we have defined:
si = @IC ¢, and ¢ = ¢IC_t. (19)

The ‘sparsity factor’ s; can be seen to be a measure of the extent that basis vector ¢, ‘overlaps’
those already present in the model. The ‘quality factor’ can be written as ¢; = 07 2¢; (t — y_;),
and is thus a measure of the alignment of ¢, with the error of the model with that vector excluded.

The objective function has now been decomposed into L£(e_;), the marginal likelihood with ¢,
excluded, and £(«;), where terms in «; are now conveniently isolated.

Analysis of ¢(a;) [3] shows that £(a) has a unique maximum with respect to «;:

o = st if ¢2 > s, (20)
T 2 9 7 79
q; — Si
;= 00, if ¢ < s;. (21)

An example illustrating these two cases is given in Figure 1.

It is relatively straightforward to compute ¢; and s; for all the basis functions ¢; in the dictionary,
including those not currently utilised in the model (i.e. for which «; = c0). In fact, it is easier to
maintain and update values of

Sy = ¢;Cil¢ma Qm = d);rnciltv (22)

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

log marginal likelihood

107 Q 10° 10’ 107 10° 10’
Figure 1: Example plots of £(a;) against o (on a log scale) for ¢* > s (left), showing the single
maximum at finite oy, and ¢% < s (right), showing the maximum as a; — 0.

and from these it follows simply:

amSm amQm

= Qm:am_sm-

Sm
Oy — Sm’

(23)
Note that when «,,, = 00, s,, = 5,, and ¢,, = Q.. In practice, then, it is convenient to utilise the
Woodbury identity to obtain the quantities of interest:

S = ¢~ B, — dL BET® " Bo,,, (24)
Qm = ¢° Bt — ¢° BEX P Bt, (25)

where B = ¢ 2L and t = t in the regression case, and for the classification case as defined by
(11) and (14) in Section 2.2. Here quantities ® and X contain only those basis functions that are
currently included in the model, and computation thus scales in the cube of that measure which
is typically only a very small fraction of the full M. Furthermore, if o2 is fixed in regression,
these quantities can all be calculated via ‘update’ formulae, given in the Appendix, with reduced
computation.

The results (20) and (21) imply that:

o If ¢, is ‘in the model’ (i.e. a; < o) yet ¢? < s;, then ¢; may be deleted (i.e. a; set to 00),

o If ¢, is excluded from the model (a; = 00) and ¢? > s;, ¢; may be added (i.e. a; is set to
some optimal finite value).

In both these cases we are able to make discrete changes to the model structure while at the same
time we are guaranteed to increase the marginal likelihood objective function. Additionally, we can
re-estimate «y; if (20) applies for basis vectors already in the model. If we perform these operations
sequentially for varying i, we can realise an efficient learning algorithm which we detail in the next
section.

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

4 A Sequential Sparse Bayesian Learning Algorithm

The proposed marginal likelihood maximisation algorithm is as follows:

1. If regression initialise o2 to some sensible value (e.g. var[t] x 0.1).

2. Initialise with a single basis vector ¢;, setting, from (20):

I Y
[GTE] — o2

All other «,, are notionally set to infinity.

(26)

6%

3. Explicitly compute ¥ and g (which are scalars initially), along with initial values of s,, and
gm for all M bases ¢,,.

4. Select a candidate basis vector ¢, from the set of all M.

Compute 6; £ ¢? — s;.

ot

If 6; > 0 and a; < oo (i.e. ¢@; is in the model), re-estimate «;.
If 6; > 0 and «o; = 00, add ¢, to the model with updated «;.

If ; <0 and a; < oo, then delete ¢, from the model and set o; = oco.

© »®» 3N @

If regression and estimating the noise level, update o2 = ||t — y||?/(N — M + > amZmm)
[11].

10. Recompute/update %, p (using the Laplace approximation procedure in classification) and
all s,, and ¢, using equations (23)—(25).

11. If converged terminate, otherwise goto 4.

4.1 Initialisation

A potential basis vector for initialisation in step 2 could be the bias, i.e. ¢, = (1,1,...,1)", if
included. A sensible alternative would be that vector with the largest normalised projection onto
the target vector, ||@; t||?/||¢;]|?, which can also be seen to give the largest initial likelihood.

4.2 Selection

In step 4, we must select a candidate basis function for updating. This should be from the set
of all functions, both included in and excluded from the current model. Candidates could be
selected (even generated) purely at random, or from an ordered list in sequence. Alternatively,
for proportionately little additional computational expense, values of #; and updated «; can be
calculated for all bases, and the change in marginal likelihood computed for each potential update
(see Appendix). That giving the greatest increase can then be implemented.

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

4.3 Updating statistics

In step 10, we desire to recompute X, u, and all quantities s,, and g¢,,. If the noise variance o2 is
fixed, this can be done efficiently using ‘update’ formulae which are detailed in the Appendix. If
o2 has been updated in a regression iteration, the necessary quantities are recomputed in full from
(24) and (25). In classification, the Laplace approximation must be re-fitted, and the linearised

quantities used in the full recomputations.

4.4 Convergence

In step 11, we must judge if we have attained a local maximum of the marginal likelihood. We
terminate when the changes in log a in Step 6 for all basis functions in the model are smaller than
1076 and all other 6; < 0.

We would re-iterate here that the above algorithm is guaranteed to increase the marginal likelihood
at each step, until a local maximum is attained. Indeed, although superficially we appear to be
‘adding’ and ‘deleting’ basis functions, we can consider that notionally we are maintaining posterior
statistics for all basis vectors concurrently (all elements of ¥ and p corresponding to ‘out of model’
basis vectors are trivially zero).

5 Simulations

In this section we offer some running-time comparisons between the previous sparse Bayesian
learning algorithm and that proposed in this paper. We utilise RVM (i.e. M = N plus bias)
models so that, for reasons of illustration rather than critical comparison, we can compare with a
state-of-the-art SVM implementation, SVM!9"¢[4]. In addition, we also compare the sparsity and
generalisation errors of the old and new sparse Bayesian algorithms®.

5.1 Regression

For this comparison, we synthetically generated data from the two-dimensional ‘sinc’ function
y(x) = sin(]|x]|)/||x]|, with added noise of standard deviation 0.1. A Gaussian kernel function of
‘width’ 2.5 was utilised. In the RVM case, we also re-estimated the noise variance one in every five
iterations.

The experiment was run with varying values of IV, from 100 to 4000, such that at the upper limit,
the design matrix was still contained in memory. The ‘old” RVM algorithm was only run up to
N = 1000. Figure 2 shows the resulting run times?, averaged over 10 random generations of the
data set.

3Note that we choose not to compare errors between RVM and SVM here, as our focus is on the comparison
between new and old sparse Bayesian techniques. Any error results for the SVM would be very much dependent on
the strategy adopted for optimising its control parameters C' and ¢, which makes deterministic comparison difficult,
and both models’ performance depends on the choice of kernel parameters too. However, a general observation for
both sets of data presented here is that the RVM does give noticably lower error, which evidence suggests is typical
for regression but atypical for classification [11].

4Quoted values were obtained on an AMD Athlon XP 2000+ PC under Windows XP.

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

Regression run time
T T T

Time (secs)
5

SVMlight

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 2: Regression run time for the old and new sparse Bayesian learning algorithms, along
with that of the equivalent SVM9"¢,

Comparing at N = 1000 we have:

Old RVM 4 mins 17 secs
New RVM 14.42 secs
SVMiight 1.03 secs

There is a clear and dramatic improvement over the existing sparse Bayesian algorithm, though
SVM! 9"t remains significantly faster.

A comparison of generalisation error (from an independent test set) and sparsity for the two
Bayesian regression algorithms is given in figure 3. In terms of error, the two approaches appear
comparable, although the new algorithm appears systematically sparser to a small degree.

RVM Regression Error RVM Sparsity
0.1 45
0.00 - - o
40
0.08 K
12}
I 35
"
£ 0.07 =
5 g
2] 1]
E 0.06 Z -
2
0.05 o0
25
0.04
0.03 20
0 200 400 600 800 1000 0 200 400 600 800 1000

N

Figure 3: RMS errors and final model sparsity for the old and new sparse Bayesian learning algorithms.

5.2 Classification

For this comparison, we again synthetically generated data from a two-dimensional problem, this
time from two classes with mixtures of Gaussian conditional distributions, as used and illustrated
in [10]. A Gaussian kernel function of ‘width’ 1.0 was utilised.

The experiment was again run with varying values of IV, from 100 to 4000. Again, the ‘old’ RVM
algorithm was only run up to N = 1000. Figure 4 shows the resulting run times, averaged over 10
random generations of the data set.

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

10

Classification run time
T T T

Time (secs)
5

— New RVM
- - OldRVM
SVMIight

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 4: Classification run time for the old and new sparse Bayesian learning algorithms, along
with that of the equivalent SVM9"¢,

Comparing at N = 1000 we have:

Old RVM 4 mins 58 secs
New RVM 12.84 secs
SVMlight 0.38 secs

A comparison of generalisation error and sparsity for the two sparse Bayesian algorithms is given
in figure 5.

RVM Classification Error RVM Sparsity

104 75
— New 7

10.2 == od 7 Pad
—~ -
S r-c
= 10 ’
Q Bes
=~ (2]
© =}
= 98 a
S g °
T 96 ©
o [
= >55
n 94 n
2 2
K 3 5
B 92 o
=

9 45

8.8 4

200 400 600 800 1000 0 200 400 600 800 1000

Figure 5: Classification errors and final model sparsity for the old and new sparse Bayesian
learning algorithms.

Similarly to the regression case, in terms of speed the new algorithm is much faster than the old,
while appearing comparable in terms of error and slightly sparser in utilisation of basis functions.

6 Summary

6.1 Efficacy of the sequential algorithm

Based on the evidence of the experiments in Section 5, the new marginal likelihood maximisation
algorithm appears to operate highly effectively. It offers a very clear speed advantage over the
originally proposed approach. Given that the sparse Bayesian framework arguably offers a num-

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

11

ber of advantageous features when compared with the popular SVM, it is salient that its main
disadvantage, that of grossly extended training time for large data sets, can be largely overcome.

That said, sparse Bayesian models still require significantly greater training time than SVM/ 9t
which operates at very impressive speed. The comparison with SVM"9"* is intended to be illus-
trative only, but given the differential between RVM and SVM training times, it is fair to make
the following points:

e SVM! 9" i a refined C implementation of the SVM, while our experiments were run using
‘prototype’-level Matlab code. Some room for improvement in the latter is to be expected.

e The SVM timings understate the ‘real’ time requirement of fitting the model as in practice
multiple runs must be undertaken to validate a value for the error/margin trade-off parameter
(‘C”), and in regression, the error tolerance (‘€’) too. Such validation is not necessary in the
sparse Bayesian case.

The new algorithm also conveys an advantage over the old in that deletion of basis functions
(i.e. setting « to infinity) now occurs analytically. In [10], basis functions were pruned when
individual iterated « values grew numerically too large. The increased numerical precision of the
deletion operation is the likely explanation for the improvement in sparsity demonstrated by the
new algorithm.

In a sequential algorithm such as presented here, there is always a concern that the procedure will
be ‘greedy’ and converge on a sub-optimal model. The experimental evidence of generalisation
error (which is only weakly an indicator of the ‘greediness’ of the procedure, but the one of most
interest) indicates that little if any cost in solution ‘quality’ is being paid, on the simple data
studied here at least.

6.2 Directions for further investigation

e There is a potential modification to the algorithm to reduce its greediness. As well as ad-
dition, deletion and updating, it is possible to consider exchanging of basis vectors — i.e.
simultaneous deletion and addition. This permits the deletion of a basis function which
would initially lower the marginal likelihood, which is then more than compensated for by an
additional vector. This requires only little further computation in practice. A first implemen-
tation shows this to work effectively, but we have encountered initial numerical difficulties
with this feature which we are currently working to overcome.

e An alternative suggestion is to propose ‘split’ and ‘merge’ operations, where, for example,
two basis functions could be combined and replaced with a single such function located at
their respective midpoint. The effect of such modifications on the marginal likelihood could
be assessed relatively efficiently given the framework presented here.

e One final notable issue we have not considered here is application to larger data sets where
the design matrix will not fit in memory and where the original algorithm cannot be used.
The presented sequential algorithm can be applied without modification in this case, although
there is a large additional cost associated with the extra repeated re-evaluations of the basis
functions. For practical efficiency, we have therefore adopted an approach where we apply the
algorithm in full to subsets of the basis functions in sequence, and terminate when all have
simultaneously converged (which still maximises the correct marginal likelihood measure).
We are currently finalising the exact mechanism of this technique, but have already obtained
successful results on as many as one million data points.

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

12

Acknowledgments

The authors would like to thank the reviewers for helpful comments and suggestions.

References

[1] C. M. Bishop and M. E. Tipping. Variational relevance vector machines. In C. Boutilier and M. Gold-
szmidt, editors, Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages
46-53. Morgan Kaufmann, 2000.

[2] C. Cortes and V. N. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.

[3] A. C. Faul and M. E. Tipping. Analysis of sparse Bayesian learning. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 383—-389.
MIT Press, 2002.

[4] T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods — Support Vector Learning. MIT Press, 1999.

[5] J. T.-K. Kwok. The evidence framework applied to support vector machines. IEEFE Transactions on
Neural Networks, 11(5):1162-1173, 2000.

[6] D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation,
4(5):720-736, 1992.

[7] I. T. Nabney. Efficient training of RBF networks for classification. In Proceedings of the Ninth
International Conference on Artificial Neural Networks (ICANN99), pages 210-215. IEE, 1999.

[8] J. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Schélkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods — Support
Vector Learning, pages 185—208, Cambridge, MA, 1999. MIT Press.

[9] P. Sollich. Probabilistic methods for support vector machines. In S. A. Solla, T. K. Leen, and K.-R.
Miiller, editors, Advances in Neural Information Processing Systems 12, pages 349-355. MIT Press,
2000.

[10] M. E. Tipping. The Relevance Vector Machine. In S. A. Solla, T. K. Leen, and K.-R. Miiller, editors,
Advances in Neural Information Processing Systems 12, pages 652-658. MIT Press, 2000.

[11] M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 1:211-244, 2001.

[12] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

A Efficient calculations for some quantities of interest

In step 4 of the algorithm in Section 4 we may wish to calculate the increase or decrease of the marginal
likelihood L£(eax) according to which basis function is added, deleted or re-estimated. Efficient expressions
for the likelihood changes are given below.

Also, in step 10, it is necessary to recompute X, g, and all quantities s, and gm. If o2 is fixed (perhaps
only for the iteration in question), then in all cases update formulae can be utilised for efficiency and
accuracy; no quantities need be calculated ab initio.

A.1 Notation

The size of the basis at step t of the algorithm is denoted as M;. For efficiency, ® as used below need only
comprise columns of included basis functions, and so is N x M;. Similarly 3 and p likewise are computed
only for the ‘current’ basis and so are of order M (all other entries in the ‘full’ version of ¥ and p would

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

13

be zero). The integer ¢ € {1... M} is used to index the single basis function for which «; is to be updated,
and the integer j € {1...M;} to denote the index within the current basis that corresponds to i. The
index m ranges over all basis functions. For convenience, § £ ¢~ 2. Updated quantities are denoted by a
tilde (e.g. @).

A.2 Adding a new basis function

Q; — S Si
2AL = o o log o (27)
- |[Z+5°TuTe"¢,0/ex 47X, 2079, 08
B -3’2 (22" 9,)" i 7 (28)
_ — i@ ¢,
u={“ uﬁ. ¢], (29)
i
S = Sm — Zii(Bore)?, (30)
Qm = Qm — pi(Bei), (31)
where ¥;; = (a; + Si)fl, i = X4Q; and we define e; £ ¢, — BPTP®T,.
A.3 Re-estimating a basis function
Defining k; £ (2;; + (& — a;)~") ™" and X; as the j-th column of X:
2AL = % —log {1+ Si[a; " —o; ']}, (32)
Sit[a;" —a;]! A
=3 3%%], (33)
Bo=p— K35, (34)
S = Sm + 1 (BE] 27 ,,)%, (35)
@m = Qm + Kjl; (ﬁEIQTﬁbm)‘ (36)
A.4 Deleting a basis function
? S.
2AL = *— —log (1 - J) , (37)
i — O (&%)
1 T
S=- %%
Ejj <> (38)
~ Fi
p=p—- 53 39
G = S + —— (B=TB" P)2, (40)
X
Qm = Qm + £ (3] ®76,,). (41)
i

Following updates (38) and (39), the appropriate row and/or column j is removed from ¥ and fi.

