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Abstract Principal component analysis (PCA) is one of the most popular techniques for processing,
compressing and visualising data, although its effectiveness is limited by its global linearity.
While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture
data complexity by a combination of local linear PCA projections. However, conventional
PCA does not correspond to a probability density, and so there is no unique way to combine
PCA models. Previous attempts to formulate mixture models for PCA have therefore to
some extent been ad hoc. In this paper, PCA is formulated within a maximum-likelihood
framework, based on a specific form of Gaussian latent variable model. This leads to a well-
defined mixture model for probabilistic principal component analysers, whose parameters
can be determined using an EM algorithm. We discuss the advantages of this model in
the context of clustering, density modelling and local dimensionality reduction, and we
demonstrate its application to image compression and handwritten digit recognition.

1 Introduction

Principal component analysis (PCA) (Jolliffe 1986) has proven to be an exceedingly popular tech-
nique for dimensionality reduction and is discussed at length in most texts on multivariate analysis.
Its many application areas include data compression, image analysis, visualization, pattern recog-
nition, regression and time series prediction.

The most common definition of PCA, due to Hotelling (1933), is that, for a set of observed d-
dimensional data vectors {tn}, n ∈ {1 . . . N}, the q principal axes wj , j ∈ {1 . . . q}, are those
orthonormal axes onto which the retained variance under projection is maximal. It can be shown
that the vectors wj are given by the q dominant eigenvectors (i.e. those with the largest associated
eigenvalues) of the sample covariance matrix S =

∑
n(tn − t̄)(tn − t̄)T/N such that Swj = λjwj

and where t̄ is the sample mean. The vector xn = WT(tn − t̄), where W = (w1,w2, . . . ,wq), is
thus a q-dimensional reduced representation of the observed vector tn.

A complementary property of PCA, and that most closely related to the original discussions of
Pearson (1901), is that the projection onto the principal subspace minimizes the squared reconstruc-
tion error

∑ ‖tn− t̂n‖2. The optimal linear reconstruction of tn is given by t̂n = Wxn + t̄, where
xn = WT(tn − t̄), and the orthogonal columns of W span the space of the leading q eigenvectors
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of S. In this context, the principal component projection is often known as the Karhunen-Loève
transform.

One limiting disadvantage of these definitions of PCA is the absence of an associated probability
density or generative model. Deriving PCA from the perspective of density estimation would offer
a number of important advantages including the following:

• The corresponding likelihood would permit comparison with other density-estimation tech-
niques and facilitate statistical testing.

• Bayesian inference methods could be applied (e.g. for model comparison) by combining the
likelihood with a prior.

• In classification, PCA could be used to model class-conditional densities, thereby allowing
the posterior probabilities of class membership to be computed. This contrasts with the
alternative application of PCA for classification of Oja (1983) and Hinton et al. (1997).

• The value of the probability density function could be used as a measure of the ‘degree of
novelty’ of a new data point, an alternative approach to that of Japkowicz et al. (1995) and
Petsche et al. (1996) in autoencoder-based PCA.

• The probability model would offer a methodology for obtaining a principal component pro-
jection when data values are missing.

• The single PCA model could be extended to a mixture of such models.

This final advantage is particularly significant. Because PCA only defines a linear projection of the
data, the scope of its application is necessarily somewhat limited. This has naturally motivated
various developments of nonlinear principal component analysis in an effort to retain a greater
proportion of the variance using fewer components. Examples include principal curves (Hastie and
Stuetzle 1989; Tibshirani 1992), multi-layer auto-associative neural networks (Kramer 1991), the
kernel-function approach of Webb (1996) and the generative topographic mapping, or GTM, of
Bishop, Svensén, and Williams (1998). However, an alternative paradigm to such global nonlinear
approaches is to model nonlinear structure with a collection, or mixture, of local linear sub-models.
This philosophy is an attractive one, motivating, for example, the ‘mixture of experts’ technique
for regression (Jordan and Jacobs 1994).

A number of implementations of ‘mixtures of PCA’ have been proposed in the literature, each of
which defines a different algorithm, or a variation thereupon. The variety of proposed approaches is
a consequence of ambiguity in the formulation of the overall model. Current methods for local PCA
generally necessitate a two-stage procedure: a partitioning of the data space followed by estimation
of the principal subspace within each partition. Standard Euclidean distance-based clustering may
be performed in the partitioning phase, but more appropriately, the reconstruction error may be
utilised as the criterion for cluster assignments. This conveys the advantage that a common cost
measure is utilised in both stages. However, even recently proposed models which adopt this cost
measure still define different algorithms (Hinton, Dayan, and Revow 1997; Kambhatla and Leen
1997), while a variety of alternative approaches for combining local PCA models have also been
proposed (Broomhead et al. 1991; Bregler and Omohundro 1995; Hinton et al. 1995; Dony and
Haykin 1995). None of these algorithms defines a probability density.

One difficulty in implementation is that when utilising ‘hard’ clustering in the partitioning phase
(Kambhatla and Leen 1997), the overall cost function is inevitably non-differentiable. Hinton,
Dayan, and Revow (1997) finesse this problem by considering the partition assignments as ‘missing
data’ in an expectation-maximization (EM) framework, and thereby propose a ‘soft’ algorithm
where instead of any given data point being assigned exclusively to one principal component
analyser, the ‘responsibility’ for its ‘generation’ is shared amongst all of the analysers. The authors
concede that the absence of a probability model for PCA is a limitation to their approach and
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propose that the responsibility of the jth analyser for reconstructing data point tn be given by
rnj = exp (−E2

j /2σ2)/
{∑

j′ exp (−E2
j′/2σ2)

}
, where Ej is the corresponding reconstruction cost.

This allows the model to be determined by the maximization of a pseudo-likelihood function, and
an explicit two-stage algorithm is unnecessary. Unfortunately, this also requires the introduction
of a variance parameter σ2 whose value is somewhat arbitrary, and again, no probability density
is defined.

Our key result is to derive a probabilistic model for PCA. From this a mixture of local PCA models
follows as a natural extension in which all of the model parameters may be estimated through the
maximization of a single likelihood function. Not only does this lead to a clearly defined and
unique algorithm, but it also conveys the advantage of a probability density function for the final
model with all the associated benefits as outlined above.

In Section 2, we describe the concept of latent variable models. We then introduce probabilistic
principal component analysis (PPCA) in Section 3, showing how the principal subspace of a set of
data vectors can be obtained within a maximum-likelihood framework. Next we extend this result
to mixture models in Section 4, and outline an efficient EM algorithm for estimating all of the
model parameters in a mixture of probabilistic principal component analysers. The partitioning
of the data and the estimation of local principal axes are automatically linked. Furthermore, the
algorithm implicitly incorporates a soft clustering similar to that implemented by Hinton et al.
(1997), in which the parameter σ2 appears naturally within the model. Indeed, σ2 has a simple
interpretation and is determined by the same EM procedure used to update the other model
parameters.

The proposed PPCA mixture model has a wide applicability, and we discuss its advantages from
two distinct perspectives. First, in Section 5, we consider PPCA for dimensionality reduction and
data compression in local linear modelling. We demonstrate the operation of the algorithm on a
simple toy problem, and compare its performance with that of an explicit reconstruction-based
non-probabilistic modelling method on both synthetic and real-world datasets.

A second perspective is that of general Gaussian mixtures. The PPCA mixture model offers a way
to control the number of parameters when estimating covariance structures in high dimensions,
while not over-constraining the model flexibility. We demonstrate this property in Section 6, and
apply the approach to the classification of images of handwritten digits.

Proofs of key results and algorithmic details are left to the appendices.

2 Latent Variable Models and PCA

2.1 Latent Variable Models

A latent variable model seeks to relate a d-dimensional observed data vector t to a corresponding
q-dimensional vector of latent variables x:

t = y(x;w) + ε, (1)

where y(·; ·) is a function of the latent variables x with parameters w, and ε is an x-independent
noise process. Generally, q < d such that the latent variables offer a more parsimonious description
of the data. By defining a prior distribution over x, together with the distribution of ε, equation
(1) induces a corresponding distribution in the data space, and the model parameters may then
be determined by maximum-likelihood techniques. Such a model may also be termed ‘generative’,
as data vectors t may be generated by sampling from the x and ε distributions and applying (1).



Mixtures of Probabilistic Principal Component Analysers 4

2.2 Factor Analysis

Perhaps the most common example of a latent variable model is that of statistical factor analysis
(Bartholomew 1987), in which the mapping y(x;w) is a linear function of x:

t = Wx + µ + ε. (2)

Conventionally, the latent variables are defined to be independent and Gaussian with unit variance,
so x ∼ N (0, I). The noise model is also Gaussian such that ε ∼ N (0,Ψ), with Ψ diagonal, and
the (d× q) parameter matrix W contains the factor loadings. The parameter µ permits the data
model to have non-zero mean. Given this formulation, the observation vectors are also normally
distributed t ∼ N (µ,C), where the model covariance is C = Ψ + WWT. (Note that as a result
of this parameterisation C is invariant under post-multiplication of W by an orthogonal matrix,
equivalent to a rotation of the x co-ordinate system.) The key motivation for this model is that,
because of the diagonality of Ψ, the observed variables t are conditionally independent given the
latent variables, or factors, x. The intention is that the dependencies between the data variables
t are explained by a smaller number of latent variables x, while ε represents variance unique to
each observation variable. This is in contrast to conventional PCA, which effectively treats both
variance and covariance identically. It should also be noted that there is no closed-form analytic
solution for W and Ψ, and so their values must be determined by iterative procedures.

2.3 Links from Factor Analysis to PCA

In factor analysis the subspace defined by the columns of W will generally not correspond to the
principal subspace of the data. Nevertheless, certain links between the two methods have previously
been noted. For instance, it has been observed that the factor loadings and the principal axes are
quite similar in situations where the estimates of the elements of Ψ turn out to be approximately
equal (e.g. Rao 1955). Indeed, this is an implied result of the fact that if Ψ = σ2I and an isotropic,
rather than diagonal, noise model is assumed, then PCA emerges if the d− q smallest eigenvalues
of the sample covariance matrix S are exactly equal. This “homoscedastic residuals model” is
considered by Basilevsky (1994, p361), for the case where the model covariance is identical to
its data sample counterpart. Given this restriction, the factor loadings W and noise variance σ2

are identifiable (assuming correct choice of q) and can be determined analytically through eigen-
decomposition of S, without resort to iteration (Anderson 1963).

However, this established link with PCA requires that the d − q minor eigenvalues of the sample
covariance matrix be equal (or more trivially, be negligible) and thus implies that the covariance
model must be exact. Not only is this assumption rarely justified in practice, but when exploiting
PCA for dimensionality reduction, we do not require an exact characterisation of the covariance
structure in the minor subspace, as this information is effectively ‘discarded’. In truth, what is of
real interest in the homoscedastic residuals model is the form of the maximum-likelihood solution
when the model covariance is not identical to its data sample counterpart.

Importantly, we show in the following section that PCA does still emerge in the case of an approx-
imate model. In fact, this link between factor analysis and PCA had been partially explored in the
early factor analysis literature by Lawley (1953) and Anderson and Rubin (1956). Those authors
showed that the maximum-likelihood solution in the approximate case was related to the eigenvec-
tors of the sample covariance matrix, but did not show that these were the principal eigenvectors
but instead made this additional assumption. In the next section (and Appendix A) we extend this
earlier work to give a full characterisation of the properties of the model we term “probabilistic
PCA”. Specifically, with ε ∼ N (

0, σ2I
)
, the columns of the maximum-likelihood estimator WML

are shown to span the principal subspace of the data even when C 6= S.
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3 Probabilistic PCA

3.1 The Probability Model

For the case of isotropic noise ε ∼ N (
0, σ2I

)
, equation (2) implies a probability distribution over

t-space for a given x of the form

p(t|x) = (2πσ2)−d/2 exp
{
− 1

2σ2
‖t−Wx− µ‖2

}
. (3)

With a Gaussian prior over the latent variables defined by

p(x) = (2π)−q/2 exp
{
−1

2
xTx

}
, (4)

we obtain the marginal distribution of t in the form

p(t) =
∫

p(t|x)p(x)dx, (5)

= (2π)−d/2|C|−1/2 exp
{
−1

2
(t− µ)TC−1(t− µ)

}
, (6)

where the model covariance is
C = σ2I + WWT. (7)

Using Bayes’ rule, the posterior distribution of the latent variables x given the observed t may be
calculated:

p(x|t) = (2π)−q/2|σ−2M|1/2 ×
exp

[
−1

2
{
x−M−1WT(t− µ)

}T
(σ−2M)

{
x−M−1WT(t− µ)

}]
, (8)

where the posterior covariance matrix is given by

σ2M−1 = σ2(σ2I + WTW)−1. (9)

Note that M is q × q while C is d× d.

The log-likelihood of observing the data under this model is

L =
N∑

n=1

ln {p(tn)} ,

= −N

2
{
d ln(2π) + ln |C|+ tr

(
C−1S

)}
, (10)

where

S =
1
N

N∑
n=1

(tn − µ)(tn − µ)T, (11)

is the sample covariance matrix of the observed {tn}.

3.2 Properties of the Maximum-Likelihood Estimators

It is easily seen that the maximum-likelihood estimate of the parameter µ is given by the mean of
the data:

µML =
1
N

N∑
n=1

tn. (12)

We now consider the maximum–likelihood estimators for the parameters W and σ2.



Mixtures of Probabilistic Principal Component Analysers 6

3.2.1 The Weight Matrix W

The log-likelihood (10) is maximized when the columns of W span the principal subspace of the
data. To show this we consider the derivative of (10) with respect to W:

∂L
∂W

= N(C−1SC−1W −C−1W). (13)

In Appendix A it is shown that, with C given by (7), the only non-zero stationary points of (13)
occur for:

W = Uq(Λq − σ2I)1/2R, (14)

where the q column vectors in the d × q matrix Uq are eigenvectors of S, with corresponding
eigenvalues in the q×q diagonal matrix Λq, and R is an arbitrary q×q orthogonal rotation matrix.
Furthermore, it is also shown that the stationary point corresponding to the global maximum of
the likelihood occurs when Uq comprises the principal eigenvectors of S, and thus Λq contains the
corresponding eigenvalues λ1, . . . , λq, where the eigenvalues of S are indexed in order of decreasing
magnitude. All other combinations of eigenvectors represent saddle-points of the likelihood surface.
Thus, from (14), the latent variable model defined by equation (2) effects a mapping from the latent
space into the principal subspace of the observed data.

3.2.2 The Noise Variance σ2

It may also be shown that for W = WML, the maximum-likelihood estimator for σ2 is given by

σ2
ML =

1
d− q

d∑

j=q+1

λj , (15)

where λq+1, . . . , λd are the smallest eigenvalues of S and so σ2
ML has a clear interpretation as the

average variance ‘lost’ per discarded dimension.

3.3 Dimensionality Reduction and Optimal Reconstruction

To implement probabilistic PCA, we would generally first compute the usual eigen-decomposition
of S (we consider an alternative, iterative, approach shortly), after which σ2

ML is found from (15)
followed by WML from (14). This is then sufficient to define the associated density model for PCA,
allowing the advantages listed in Section 1 to be exploited.

In conventional PCA, the reduced-dimensionality transformation of a data point tn is given by
xn = UT

q (tn−µ) and its reconstruction by t̂n = Uqxn +µ. This may be similarly achieved within
the PPCA formulation. However, we note that in the probabilistic framework, the generative
model defined by equation (2) represents a mapping from the lower-dimensional latent space to
the data space. So, in PPCA, the probabilistic analogue of the dimensionality reduction process
of conventional PCA would be to invert the conditional distribution p(t|x) using Bayes’ rule, in
equation (8), to give p(x|t). In this case, each data point tn is represented in the latent space not
by a single vector, but by the Gaussian posterior distribution defined by (8). As an alternative to
the standard PCA projection then, a convenient summary of this distribution and representation
of tn would be the posterior mean 〈xn〉 = M−1WT

ML(tn−µ), a quantity that also arises naturally
in (and is computed in) the EM implementation of PPCA considered in Section 3.4. Note, also
from (8), that the covariance of the posterior distribution is given by σ2M−1 and is therefore
constant for all data points.

However, perhaps counter-intuitively given equation (2), WML〈xn〉 + µ is not the optimal linear
reconstruction of tn. This may be seen from the fact that, for σ2 > 0, WML〈xn〉 + µ is not an
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orthogonal projection of tn, as a consequence of the Gaussian prior over x causing the posterior
mean projection to become skewed towards the origin. If we consider the limit as σ2 → 0, the pro-
jection WML〈xn〉 = WML(WT

MLWML)−1WT
ML(tn −µ) does become orthogonal and is equivalent

to conventional PCA, but then the density model is singular and thus undefined.

Taking this limit is not necessary however, since the optimal least-squares linear reconstruction of
the data from the posterior mean vectors 〈xn〉 may be obtained from (see Appendix B):

t̂n = WML (WT
MLWML)−1 M〈xn〉+ µ, (16)

with identical reconstruction error to conventional PCA.

For reasons of probabilistic elegance therefore, we might choose to exploit the posterior mean
vectors 〈xn〉 as the reduced-dimensionality representation of the data, although there is no material
benefit in so doing. Indeed, we note that in addition to the conventional PCA representation
UT

q (tn − µ), the vectors x̂n = WT
ML(tn − µ) could equally be used without loss of information,

and reconstructed using t̂n = WML (WT
MLWML)−1 x̂n + µ.

3.4 An EM Algorithm For PPCA

By a simple extension of the EM formulation for parameter estimation in the standard linear fac-
tor analysis model (Rubin and Thayer 1982), we can obtain a principal component projection by
maximizing the likelihood function (10). We are not suggesting that such an approach necessarily
be adopted for probabilistic PCA — normally the principal axes would be estimated in the con-
ventional manner, via eigen-decomposition of S, and subsequently incorporated in the probability
model using equations (14) and (15) to realise the advantages outlined in the introduction. How-
ever, as discussed in Appendix A.5, there may be an advantage in the EM approach for large d since
the presented algorithm, although iterative, requires neither computation of the d × d covariance
matrix, which is O(Nd2), nor its explicit eigen-decomposition, which is O(d3). We derive the EM
algorithm and consider its properties from the computational perspective in Appendix A.5.

3.5 Factor Analysis Revisited

The probabilistic PCA algorithm was obtained by introducing a constraint into the noise matrix of
the factor analysis latent variable model. This apparently minor modification leads to significant
differences in the behaviour of the two methods. In particular, we now show that the covariance
properties of the PPCA model are identical to those of conventional PCA, and are quite different
from those of standard factor analysis.

Consider a non-singular linear transformation of the data variables, so that t → At. Using (12)
we see that under such a transformation the maximum likelihood solution for the mean will be
transformed as µML → AµML. From (11) it then follows that the covariance matrix will transform
as S → ASAT.

The log-likelihood for the latent variable model, from (10), is given by

L(W,Ψ) = −N

2
{
d ln(2π) + ln |WWT + Ψ|+ tr

[
(WWT + Ψ)−1S

]}
(17)

where Ψ is a general noise covariance matrix. Thus, using (17), we see that under the transforma-
tion t → At the log likelihood will transform as

L(W,Ψ) → L(A−1W,A−1ΨA−T)−N ln |A| (18)
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where A−T ≡ (A−1)T. Thus if WML and ΨML are maximum likelihood solutions for the original
data, then AWML and AΨMLAT will be maximum likelihood solutions for the transformed data
set.

In general the form of the solution will not be preserved under such a transformation. However,
we can consider two special cases. First, suppose Ψ is a diagonal matrix, corresponding to the
case of factor analysis. Then Ψ will remain diagonal provided A is also a diagonal matrix. This
says that factor analysis is covariant under component-wise rescaling of the data variables: the
scale factors simply become absorbed into rescaling of the noise variances, and the rows of W
are rescaled by the same factors. Second, consider the case Ψ = σ2I, corresponding to PPCA.
Then the transformed noise covariance σ2AAT will only be proportional to the unit matrix if
AT = A−1, in other words if A is an orthogonal matrix. Transformation of the data vectors
by multiplication with an orthogonal matrix corresponds to a rotation of the coordinate system.
This same covariance property is shared by standard non-probabilistic PCA since a rotation of
the coordinates induces a corresponding rotation of the principal axes. Thus we see that factor
analysis is covariant under component-wise rescaling, while PPCA and PCA are covariant under
rotations, as illustrated in Figure 1.

Figure 1: Factor analysis is covariant under a component-wise rescaling of the data variables
(top plots) while PCA and probabilistic PCA are covariant under rotations of the
data space coordinates (bottom plots).

4 Mixtures of Probabilistic Principal Component
Analysers

The association of a probability model with PCA offers the tempting prospect of being able to
model complex data structures with a combination of local PCA models through the mechanism
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of a mixture of probabilistic principal component analysers (Tipping and Bishop 1997). This for-
mulation would permit all of the model parameters to be determined from maximum-likelihood,
where both the appropriate partitioning of the data and the determination of the respective prin-
cipal axes occur automatically as the likelihood is maximized. The log-likelihood of observing the
data set for such a mixture model is:

L =
N∑

n=1

ln {p(tn)} , (19)

=
N∑

n=1

ln

{
M∑

i=1

πip(tn|i)
}

, (20)

where p(t|i) is a single PPCA model and πi is the corresponding mixing proportion, with πi ≥ 0
and

∑
πi = 1. Note that a separate mean vector µi is now associated with each of the M mixture

components, along with the parameters Wi and σ2
i . A related model has recently been exploited

for data visualization (Bishop and Tipping 1998), while a similar approach, based on the standard
factor analysis diagonal (Ψ) noise model, has been employed for handwritten digit recognition
(Hinton et al. 1997), although it does not implement PCA.

The corresponding generative model for the mixture case now requires the random choice of a
mixture component according to the proportions πi, followed by sampling from the x and ε dis-
tributions and applying equation (2) as in the single model case, taking care to utilise the ap-
propriate parameters µi, Wi and σ2

i . Furthermore, for a given data point t, there is now a
posterior distribution associated with each latent space, the mean of which for space i is given by
(σ2

i I + WT
i Wi)−1WT

i (t− µi).

We can develop an iterative EM algorithm for optimization of all of the model parameters πi, µi,
Wi and σ2

i . If Rni = p(i|tn) is the posterior responsibility of mixture i for generating data point
tn, given by

Rni =
p(tn|i)πi

p(tn)
, (21)

then in Appendix C it is shown that we obtain the following parameter updates:

π̃i =
1
N

N∑
n=1

Rni, (22)

µ̃i =
∑N

n=1 Rnitn∑N
n=1 Rni

. (23)

Thus the updates for π̃i and µ̃i correspond exactly to those of a standard Gaussian mixture formu-
lation (e.g. see Bishop 1995). Furthermore, in Appendix C, it is also shown that the combination
of the E- and M-steps leads to the intuitive result that the axes Wi and the noise variance σ2

i are
determined from the local responsibility-weighted covariance matrix:

Si =
1

π̃iN

N∑
n=1

Rni(tn − µ̃i)(tn − µ̃i)
T, (24)

by standard eigen-decomposition in exactly the same manner as for a single PPCA model. However,
as noted earlier in Section 3.4 (and also in Appendix A.5), for larger values of data dimensionality
d, computational advantages can be obtained if Wi and σ2

i are updated iteratively according to
an EM schedule. This is discussed for the mixture model in Appendix C.

Iteration of equations (21), (22) and (23) in sequence followed by computation of Wi and σ2
i , either

from equation (24) using (14) and (15) or using the iterative updates in Appendix C, is guaranteed
to find a local maximum of the log-likelihood (19). At convergence of the algorithm each weight
matrix Wi spans the principal subspace of its respective Si.
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In the next section we consider applications of this PPCA mixture model, beginning with data
compression and reconstruction tasks. We then consider general density modelling in Section 6.

5 Local Linear Dimensionality Reduction

In this section we begin by giving an illustration of the application of the PPCA mixture algorithm
to a synthetic data set. More realistic examples are then considered, with an emphasis on cases
in which a principal component approach is motivated by the objective of deriving a reduced-
dimensionality representation of the data which can be reconstructed with minimum error. We
will therefore contrast the clustering mechanism in the PPCA mixture model with that of a hard
clustering approach based explicitly on reconstruction error as utilised in a typical algorithm.

5.1 Illustration for Synthetic Data

For a demonstration of the mixture of PPCA algorithm, we generated a synthetic dataset compris-
ing 500 data points sampled uniformly over the surface of a hemisphere, with additive Gaussian
noise. Figure 2(a) shows this data.

A mixture of 12 probabilistic principal component analysers was then fitted to the data using the
EM algorithm outlined in the previous section, with latent space dimensionality q = 2. Because
of the probabilistic formalism, a generative model of the data is defined and we emphasise this by
plotting a second set of 500 data points, obtained by sampling from the fitted generative model.
These data points are shown in Figure 2(b). Histograms of the distances of all the data points
from the hemisphere are also given to indicate more clearly the accuracy of the model in capturing
the structure of the underlying generator.

5.2 Clustering Mechanisms

Generating a local PCA model of the form illustrated above is often prompted by the ultimate
goal of accurate data reconstruction. Indeed, this has motivated Kambhatla and Leen (1997)
and Hinton et al. (1997) to utilise squared reconstruction error as the clustering criterion in the
partitioning phase. Dony and Haykin (1995) adopt a similar approach to image compression,
although their model has no set of independent ‘mean’ parameters µi. Using the reconstruction
criterion, a data point is assigned to the component that reconstructs it with lowest error, and the
principal axes are then re-estimated within each cluster. For the mixture of PPCA model, however,
data points are assigned to mixture components (in a soft fashion) according to the responsibility
Rni of the mixture component for its generation. Since, Rni = p(tn|i)πi/p(tn) and p(tn) is constant
for all components, Rni ∝ p(tn|i) and we may gain further insight into the clustering by considering
the probability density associated with component i at data point tn:

p(tn|i) = (2π)−d/2|Ci|−1/2 exp
{−E2

ni/2
}

, (25)

where

E2
ni = (tn − µi)

TC−1
i(tn − µi), (26)

Ci = σ2
i I + WiWT

i . (27)

It is helpful to express the matrix Wi in terms of its singular value decomposition (and although we
are considering an individual mixture component i, the i subscript will be omitted for notational
clarity):

W = Uq(Kq − σ2I)1/2R, (28)
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(a)

(b)
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Figure 2: Modelling noisy data on a hemisphere. (a) On the left, the synthetic data, on the
right, a histogram of the Euclidean distances of each data point to the sphere. (b)
Similarly for data generated from the fitted PPCA mixture model.

where Uq is a d× q matrix of orthonormal column vectors and R is an arbitrary q × q orthogonal
matrix. The singular values are parameterised, without loss of generality, in terms of (Kq−σ2I)1/2,
where Kq = diag(k1, k2, . . . , kq) is a q × q diagonal matrix. Then

E2
n = (tn − µ)T

{
σ2I + Uq(Kq − σ2I)UT

q

}−1
(tn − µ). (29)

The data point tn may also be expressed in terms of the basis of vectors U = (Uq,Ud−q), where
Ud−q comprises (d − q) vectors perpendicular to Uq which complete an orthonormal set. In this
basis, we define zn = UT(tn − µ) and so tn − µ = Uzn, from which (29) may then be written as

E2
n = zT

nUT
{
σ2I + Uq(Kq − σ2I)UT

q

}−1
Uzn, (30)

= zT
nD−1zn, (31)

where D = diag(k1, k2, . . . , kq, σ
2, . . . , σ2) is a d× d diagonal matrix. Thus:

E2
n = zT

inK
−1

qzin +
zT
outzout

σ2
, (32)

= E2
in + E2

rec/σ2, (33)

where we have partitioned the elements of z into zin, the projection of tn − µ onto the subspace
spanned by W, and zout, the projection onto the corresponding perpendicular subspace. Thus E2

rec

is the squared reconstruction error and E2
in may be interpreted as an ‘in-subspace’ error term. Note

that at the maximum-likelihood solution, Uq is the matrix of eigenvectors of the local covariance
matrix and Kq = Λq.
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As σ2
i → 0, Rni ∝ πi exp

(−E2
rec/2

)
and, for equal prior probabilities, cluster assignments are

equivalent to a soft reconstruction-based clustering. However, for σ2
A, σ2

B > 0, consider a data
point which lies in the subspace of a relatively distant component A, which may be reconstructed
with zero error, yet which lies more closely to the mean of a second component B. The effect of
the noise variance σ2

B in (33) is to moderate the contribution of E2
rec for component B. As a result,

the data point may be assigned to the nearer component B even though the reconstruction error
is considerably greater, given that it is sufficiently distant from the mean of A such that E2

in for A
is large.

It should be expected, then, that mixture of PPCA clustering would result in more localised
clusters, but with final reconstruction error inferior to that of a clustering model based explicitly
on a reconstruction criterion. Conversely, it should also be clear that clustering the data according
to the proximity to the subspace alone will not necessarily result in localised partitions (as noted
by Kambhatla (1995), who also considers the relationship of such an algorithm to a probabilistic
model). That this is so is simply illustrated in Figure 3, in which a collection of 12 conventional PCA
models have been fitted to the hemisphere data, according to the ‘VQPCA’ (Vector-Quantization
PCA) algorithm of Kambhatla and Leen (1997) which is defined as:

1. Select initial cluster centres µi at random from points in the dataset, and assign all data
points to the nearest (in terms of Euclidean distance) cluster centre.

2. Set the Wi vectors to the first two principal axes of the covariance matrix of cluster i.

3. Assign data points to the cluster which best reconstructs them, setting each µi to the mean
of those data points assigned to cluster i.

4. Repeat from 2 until the cluster allocations are constant.

Figure 3: Comparison of the partitioning of the hemisphere effected by a VQPCA-based model
(left) and a PPCA mixture model (right). The illustrated boundaries delineate re-
gions of the hemisphere that are best reconstructed by a particular local PCA model.
One such region is shown shaded to emphasize that clustering according to recon-
struction error results in a non-localised partitioning. In the VQPCA case, the
circular effects occur when principal component planes intersect beneath the surface
of the hemisphere.

In Figure 3, data points have been sampled over the hemisphere, without noise, and allocated to
the cluster which best reconstructs them. The left plot shows the partitioning associated with the
best (i.e. lowest reconstruction error) model obtained from 100 runs of the VQPCA algorithm.
The right plot shows a similar partitioning for the best (i.e. greatest likelihood) PPCA mixture
model using the same number of components, again from 100 runs. Note that the boundaries
illustrated in this latter plot were obtained using assignments based on reconstruction error for
the final model, in identical fashion to the VQPCA case, and not on probabilistic responsibility.
We see that the partitions formed when clustering according to reconstruction error alone can
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be non-local, as exemplified by the shaded component. This phenomenon is rather contrary to
the philosophy of local dimensionality reduction and is an indirect consequence of the fact that
reconstruction-based local PCA does not model the data in a probabilistic sense.

However, we might expect that algorithms such as VQPCA should offer better performance in
terms of the reconstruction error of the final solution, having been designed explicitly to optimize
that measure. In order to test this, we compared the VQPCA algorithm with the PPCA mixture
model on six data sets, detailed in Table 1.

Data Set N d M q Description
Hemisphere 500 3 12 2 Synthetic data used above.
Oil 500 12 12 2 Diagnostic measurements from

oil pipeline flows.
Digit 1 500 64 10 10 8× 8 gray-scale images of

handwritten digit ‘1’.
Digit 2 500 64 10 10 8× 8 gray-scale images of

handwritten digit ‘2’.
Image 500 64 8 4 8× 8 gray-scale blocks from a

photographic image.
EEG 300 30 8 5 Delay vectors from an EEG

time series signal.

Table 1: Datasets used for comparison of clustering criteria.
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Figure 4: Reconstruction errors for reconstruction-based local PCA (VQPCA) and the PPCA
mixture. Errors for the latter (∗) have been shown relative to the former (5), and
are averaged over 100 runs with random initial configurations.

Figure 4 summarises the reconstruction error of the respective models and in general, VQPCA
performs better as expected. However, we also note two interesting aspects of the results.
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First, in the case of the ‘oil’ data, the final reconstruction error of the PPCA model on both
training and test sets is counter-intuitively superior, despite the fact that the partitioning of the
data space was based only partially on reconstruction error. This behaviour is, we hypothesize, a
result of the particular structure of that dataset. The oil data is known to comprise a number of
disjoint, but locally smooth, two-dimensional cluster structures (see Bishop and Tipping 1998 for
a visualization thereof).

For the oil dataset, we observed that many of the models found by the VQPCA algorithm exhibit
partitions that are not only often non-connected (similar to those shown for the hemisphere in
Figure 3) but which may also span more than one of the disjoint cluster structures. The evidence
of Figure 4 suggests that these models represent poor local minima of the reconstruction error cost
function. The PPCA mixture algorithm does not find such sub-optimal solutions, which would
have low likelihood due to the locality implied by the density model. The experiment indicates
that by avoiding these poor solutions, the PPCA mixture model is able to find solutions with lower
reconstruction error (on average) than VQPCA.

These observations only apply to the case of the oil dataset. For the hemisphere, digit ‘1’, image
and EEG training sets, the data manifolds are less disjoint and the explicit reconstruction-based
algorithm, VQPCA, is superior. For the digit ’2’ case, the two algorithms appear approximately
equivalent.

A second aspect of Figure 4 is the suggestion that the PPCA mixture model algorithm may be
less sensitive to over-fitting. As would be expected, compared with the training set, errors on
the test set increase for both algorithms (although, because the errors have been normalised to
allow comparisons between datasets, this isn’t shown in Figure 4). However, with the exception
of the case of the digit ‘2’ data set, for the PPCA mixture model this increase is proportionately
smaller than for VQPCA. This effect is most dramatic for the image data set, where PPCA is
much superior on the test set. For that dataset, the test examples were derived from a separate
portion of the image (see below), and as such, the test set statistics can be expected to differ more
significantly from the respective training set than for the other examples.

A likely explanation for this is that, because of the ‘soft’ clustering of the PPCA mixture model,
there is an inherent ‘smoothing’ effect occurring when estimating the local sets of principal axes.
Each set of axes is determined from its corresponding local responsibility-weighted covariance
matrix which in general will be influenced by many data points, not just the subset that would
be associated with the cluster in a ‘hard’ implementation. Because of this, the parameters in the
Wi matrix in cluster i are also constrained by data points in neighbouring clusters (j 6= i) to
some extent. This notion is discussed in the context of regression by Jordan and Jacobs (1994)
as motivation for their ‘mixture of experts’ model, where the authors note how soft-partitioning
can reduce variance (in terms of the bias-variance decomposition). Although it is difficult to draw
firm conclusions from this limited set of experiments, the evidence of Figure 4 does point to the
presence of such an effect.

5.3 Application: Image Compression

As a practical example, we consider an application of the PPCA mixture model to block transform
image coding. Figure 5 shows the original image. This 720 × 360 pixel image was segmented
into 8 × 8 non-overlapping blocks, giving a total dataset of 4050 64-dimensional vectors. Half of
this data, corresponding to the left half of the picture, was used as training data. The right half
was reserved for testing, and a magnified portion of the test image is also shown in Figure 5. A
reconstruction of the entire image based on the first four principal components of a single PCA
model determined from the block-transformed left half of the image is shown in Figure 6.
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Figure 5: The original image (left), and detail therein (right).

Figure 6: The PCA reconstructed image, at 0.5 bits-per-pixel.

Figure 7: The mixture of PPCA reconstructed image, using the same bit-rate as Figure 6.
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Figure 7 shows the reconstruction of the original image when modelled by a mixture of probabilistic
principal component analysers. The model parameters were estimated using only the left half of
the image. In this example, 12 components were used, of dimensionality 4, and after the model
likelihood had been maximized, the image coding was performed in a ‘hard’ fashion — i.e. by
allocating data to the component with lowest reconstruction error. The resulting coded image was
uniformly quantised, with bits allocated equally to each transform variable, before reconstruction
in order to give a final bit-rate of 0.5 bits-per-pixel (and thus compression of 16:1) in both Figures
6 and 7. In the latter case, the cost of encoding the mixture component label was included. For
the simple principal subspace reconstruction, the normalised test error was 7.1 × 10−2, while for
the mixture model, it was 5.7× 10−2. The VQPCA algorithm gave a test error of 6.2× 10−2.

6 Density Modelling

A popular approach to semi-parametric density estimation is the Gaussian mixture model (Tit-
terington, Smith, and Makov 1985). However, such models suffer from the limitation that if each
Gaussian component is described by a full covariance matrix, then there are d(d+1)/2 independent
covariance parameters to be estimated for each mixture component. Clearly, as the dimensionality
of the data space increases, the number of data points required to specify those parameters reliably
will become prohibitive. An alternative approach, then, is to reduce the number of parameters by
placing a constraint on the form of the covariance matrix. (Another would be to introduce priors
over the parameters of the full covariance matrix, as implemented by Ormoneit and Tresp (1996).)
Two common constraints are either to restrict the covariance to be isotropic or to be diagonal. The
isotropic model is highly constrained as it only assigns a single parameter to describe the entire
covariance structure in the full d dimensions. The diagonal model is more flexible, with d parame-
ters, but the principal axes of the elliptical Gaussians must be aligned with the data axes and thus
each individual mixture component is unable to capture correlations amongst the variables.

A mixture of PPCA models, where the covariance of each Gaussian is parameterised by the relation
C = σ2I + WWT, comprises dq + 1− q(q− 1)/2 free parameters.1 (Note that the q(q− 1)/2 term
takes account of the number of parameters needed to specify the arbitrary rotation R.) It thus
permits the number of parameters to be controlled by the choice of q. When q = 0, the model is
equivalent to an isotropic Gaussian. With q = d− 1, the general covariance Gaussian is recovered.

6.1 A Synthetic Example: Noisy Spiral Data

The utility of the PPCA mixture approach may be demonstrated with the following simple example.
A 500 point data set was generated along a three-dimensional spiral configuration with added
Gaussian noise. The data was then modelled by both a mixture of PPCA models and a mixture of
diagonal covariance Gaussians, using 8 mixture components. In the mixture of PPCA case, q = 1
for each component, and so there are 4 variance parameters per component compared with 3 for
the diagonal model. The results are visualised in Figure 8, which illustrates both ‘side’ and ‘end’
projections of the data.

The orientation of the ellipses in the diagonal model can be seen not to coincide with the local
data structure, which is a result of the axial alignment constraint. A further consequence of the
diagonal parameterisation is that the means are also implicitly constrained as they tend to lie
where the tangent to the spiral is parallel to either axis of the end elevation. This qualitative
superiority of the PPCA approach is underlined quantitatively by the log-likelihood per data point
given in brackets in the figure. Such a result would of course be expected given that the PPCA

1An alternative would be a mixture of factor analysers, implemented by Hinton et al. (1997), although that
comprises more parameters.
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Diagonal Gaussian (−2.7195) PPCA Mixture (−1.4258)

Figure 8: Comparison of an 8-component diagonal variance Gaussian mixture model with a
mixture of PPCA model. The upper two plots give a view perpendicular to the major
axis of the spiral, while the lower two plots show the end elevation. The covariance
structure of each mixture component is shown by projection of a unit Mahalanobis
distance ellipse and the log-likelihood per data-point is given in brackets above the
figures.

model has an extra parameter in each mixture component, but similar results are observed if the
spiral is embedded in a space of much higher dimensionality where the extra parameter in PPCA
is proportionately less relevant.

It should be intuitive that the axial alignment constraint of the diagonal model is, in general,
particularly inappropriate when modelling a smooth and continuous lower dimensional manifold
in higher dimensions, regardless of the intrinsic dimensionality. Even with q = 1, the PPCA
approach is able to track the spiral manifold successfully.

Finally, we demonstrate the importance of the use of an appropriate number of parameters by
modelling a three-dimensional spiral data set of 100 data points (the number of data points was
reduced to emphasise the over-fitting) as above with isotropic, diagonal and full covariance Gaus-
sian mixture models, along with a PPCA mixture model. For each model, the log-likelihood per
data point both for the training data set, and an unseen test set of 1000 data points, is given in
Table 2.

As would be expected in this case of limited data, the full covariance model exhibits the best
likelihood on the training set, but test set performance is worse than for the PPCA mixture. For
this simple example, there is only one intermediate PPCA parameterisation with q = 1 (q = 0
and q = 2 are equivalent to the isotropic and full covariance cases respectively). In realistic
applications, where the dimensionality d will be considerably larger, the PPCA model offers the
choice of a range of q, and an appropriate value can be determined using standard techniques for
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Isotropic Diagonal Full PPCA
Training −3.14 −2.74 −1.47 −1.65
Test −3.68 −3.43 −3.09 −2.37

Table 2: Log-likelihood per data point measured on training and test sets for Gaussian mixture
models with eight components and a 100-point training set.

model selection. Finally, note that these advantages are not limited to mixture models, but may
equally be exploited for the case of a single Gaussian distribution.

6.2 Application: Handwritten Digit Recognition

One potential application for high-dimensionality density models is handwritten digit recognition.
Examples of gray-scale pixel images of a given digit will generally lie on a lower-dimensional
smooth continuous manifold, the geometry of which is determined by properties of the digit such
as rotation, scaling and thickness of stroke. One approach to the classification of such digits
(although not necessarily the best) is to build a model of each digit separately, and classify unseen
digits according to the model to which they are most ‘similar’.

Hinton et al. (1997) gave an excellent discussion of the handwritten digit problem, and applied a
mixture of PCA approach, using soft reconstruction-based clustering, to the classification of scaled
and smoothed 8-by-8 gray-scale images taken from the CEDAR U.S. Postal Service database (Hull
1994). The models were constructed using an 11,000-digit subset of the ‘br ’ data set (which was
further split into training and validation sets), and the ‘bs’ test set was classified according to which
model best reconstructed each digit (in the squared-error sense). We repeated the experiment with
the same data using the PPCA mixture approach utilising the same choice of parameter values
(M = 10 and q = 10). To help visualise the final model, the means of each component µi are
illustrated in digit form in figure 9.

The digits were again classified, using the same method of classification, and the best model on
the validation set misclassified 4.64% of the digits in the test set. Hinton et al. (1997) reported
an error of 4.91%, and we would expect the improvement to be a result partly of the localised
clustering of the PPCA model, but also the use of individually-estimated values of σ2

i for each
component, rather than a single, arbitrarily-chosen, global value.

One of the advantages of the PPCA methodology is that the definition of the density model permits
the posterior probabilities of class membership to be computed for each digit and utilised for
subsequent classification, rather than using reconstruction error as above. Classification according
to the largest posterior probability for the M = 10 and q = 10 model resulted in an increase in
error, and it was necessary to invest significant effort to optimize the parameters M and q for each
model to provide comparable performance. Using this approach, our best classifier on the validation
set misclassified 4.61% of the test set. An additional benefit of the use of posterior probabilities
is that it is possible to reject a proportion of the test samples about which the classifier is most
‘unsure’, and thus hopefully improve the classification performance. Using this approach to reject
5% of the test examples resulted in a misclassification rate of 2.50%. (Note that the availability of
posteriors can be advantageous in other applications, where they may be utilised in various forms
of follow-on processing.)
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Figure 9: The mean vectors µi, illustrated as gray-scale digits, for each of the ten digit models.
The model for a given digit is a mixture of ten PPCA models, one centred at each of
the pixel vectors shown on the corresponding row. Note how different components
can capture different styles of digit.

7 Conclusions

Modelling complexity in data by a combination of simple linear models is an attractive paradigm
offering both computational and algorithmic advantages along with increased ease of interpretabil-
ity. In this paper we have exploited the definition of a probabilistic model for PCA in order to
combine local PCA models within the framework of a probabilistic mixture in which all the pa-
rameters are determined from maximum-likelihood using an EM algorithm. In addition to the
clearly-defined nature of the resulting algorithm, the primary advantage of this approach is the
definition of an observation density model.

A possible disadvantage of the probabilistic approach to combining local PCA models is that,
by optimizing a likelihood function, the PPCA mixture model does not directly minimize squared
reconstruction error. For applications where this is the salient criterion, algorithms which explicitly
minimize reconstruction error should be expected to be superior. Experiments indeed showed this
to be generally the case, but two important caveats must be considered before any firm conclusions
can be drawn concerning the suitability of a given model. First, and rather surprisingly, for
one of the datasets (‘oil’) considered in the paper the final PPCA mixture model was actually
superior in the sense of squared reconstruction error, even on the training set. It was demonstrated
that algorithms incorporating reconstruction-based clustering do not necessarily generate local
clusters and it was reasoned that for datasets comprising a number of disjoint data structures, this
phenomenon may lead to poor local minima. Such minima are not found by the PPCA density
model approach. A second consideration is that there was also evidence that the smoothing implied
by the soft clustering inherent in the PPCA mixture model helps to reduce overfitting, particularly
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in the case of the image compression experiment where the statistics of the test data set differed
from the training data much more so than for other examples. In that instance the reconstruction
test error for the PPCA model was, on average, more than 10% lower.

In terms of a Gaussian mixture model, the mixture of probabilistic principal component analysers
enables data to be modelled in high dimensions with relatively few free parameters, while at the
same time not imposing a generally inappropriate constraint on the covariance structure. The num-
ber of free parameters may be controlled through the choice of latent space dimension q, allowing
an interpolation in model complexity from isotropic to full covariance structures. The efficacy of
this parameterisation was demonstrated by performance on a handwritten digit recognition task.
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A Maximum-Likelihood PCA

A.1 The Stationary Points of the Log-Likelihood

The gradient of the log-likelihood (10) with respect to W may be obtained from standard matrix
differentiation results (e.g. see Krzanowski and Marriott 1994, p. 133):

∂L
∂W

= N(C−1SC−1W −C−1W). (34)

At the stationary points:
SC−1W = W, (35)

assuming that σ2 > 0, and thus that C−1 exists. This is a necessary and sufficient condition for
the density model to remain nonsingular, and we will restrict ourselves to such cases. It will be
seen shortly that σ2 > 0 if q < rank(S), so this assumption implies no loss of practicality.

There are three possible classes of solutions to equation (35):

1. W = 0. This is shown later to be a minimum of the log-likelihood.

2. C = S, where the covariance model is exact, such as is discussed by Basilevsky (1994, pp
361–363) and considered in Section 2.3. In this unrealistic case of an exact covariance model,
where the d−q smallest eigenvalues of S are identical and equal to σ2, W is identifiable since

σ2I + WWT = S,

⇒ W = U(Λ− σ2I)1/2R, (36)

where U is a square matrix whose columns are the eigenvectors of S, with Λ the corresponding
diagonal matrix of eigenvalues, and R is an arbitrary orthogonal (i.e. rotation) matrix.

3. SC−1W = W, with W 6= 0 and C 6= S.

We are interested in case 3 where C 6= S and the model covariance need not be equal to the sample
covariance. First, we express the weight matrix W in terms of its singular value decomposition:

W = ULVT, (37)

where U is a d × q matrix of orthonormal column vectors, L = diag(l1, l2, . . . , lq) is the q × q
diagonal matrix of singular values, and V is a q × q orthogonal matrix. Now,

C−1W = (σ2I + WWT)−1W,

= W(σ2I + WTW)−1,

= UL(σ2I + L2)−1VT. (38)

Then at the stationary points, SC−1W = W implies that

SUL(σ2I + L2)−1VT = ULVT,

⇒ SUL = U(σ2I + L2)L. (39)

For lj 6= 0, equation (39) implies that if U = (u1,u2, . . . ,uq), then the corresponding column
vector uj must be an eigenvector of S, with eigenvalue λj such that σ2 + l2j = λj , and so

lj = (λj − σ2)1/2. (40)
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For lj = 0, uj is arbitrary (and if all lj are zero, then we recover case 1). All potential solutions
for W may thus be written as

W = Uq(Kq − σ2I)1/2R, (41)

where Uq is a d × q matrix comprising q column eigenvectors of S, and Kq is a q × q diagonal
matrix with elements:

kj =

{
λj , the corresponding eigenvalue to uj , or,
σ2,

(42)

where the latter case may be seen to be equivalent to lj = 0. Again, R is an arbitrary orthogonal
matrix, equivalent to a rotation in the principal subspace.

A.2 The Global Maximum of the Likelihood

The matrix Uq may contain any of the eigenvectors of S, so to identify those which maximize the
likelihood, the expression for W in (41) is substituted into the log-likelihood function (10) to give

L = −N

2



d ln(2π) +

q′∑

j=1

ln(λj) +
1
σ2

d∑

j=q′+1

λj + (d− q′) ln σ2 + q′



 , (43)

where q′ is the number of non-zero lj , {λ1, . . . , λq′} are the eigenvalues corresponding to those
‘retained’ in W, and {λq′+1, . . . , λd} are those ‘discarded’. Maximizing (43) with respect to σ2

gives

σ2 =
1

d− q′

d∑

j=q′+1

λj , (44)

and so

L = −N

2





q′∑

j=1

ln(λj) + (d− q′) ln


 1

d− q′

d∑

j=q′+1

λj


 + d ln(2π) + d



 . (45)

Note that (44) implies that σ2 > 0 if rank(S) > q as stated earlier. We wish to find the maximum
of (45) with respect to the choice of eigenvectors/eigenvalues to retain in W, j ∈ {1, . . . , q′}, and
those to discard, j ∈ {q′ + 1, . . . , d}. By exploiting the constancy of the sum of all eigenvalues
with respect to this choice, the condition for maximization of the likelihood can be expressed
equivalently as minimization of the quantity

E = ln


 1

d− q′

d∑

j=q′+1

λj


− 1

d− q′

d∑

j=q′+1

ln(λj), (46)

which conveniently depends only on the discarded values and is non-negative (Jensen’s inequality).

We consider minimization of E by first assuming that d−q′ discarded eigenvalues have been chosen
arbitrarily, and, by differentiation, consider how a single such value λk affects the value of E:

∂E

∂λk
=

1∑d
j=q′+1 λj

− 1
(d− q′)λk

. (47)

From (47), it can be seen that E(λk) is convex and has a single minimum when λk is equal to
the mean of the discarded eigenvalues (including itself). The eigenvalue λk can only take discrete
values, but if we consider exchanging λk for some retained eigenvalue λj , j ∈ {1 . . . q′}, then if λj

lies between λk and the current mean retained eigenvalue, swapping λj and λk must decrease E.
If we consider that the eigenvalues of S are ordered, for any combination of discarded eigenvalues
which includes a ‘gap’ occupied by a retained eigenvalue, there will always be a sequence of adjacent
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eigenvalues with a lower value of E. It follows then that to minimize E, the discarded eigenvalues
λq′+1, . . . , λd must be chosen to be adjacent amongst the ordered eigenvalues of S.

This alone is not sufficient to show that the smallest eigenvalues must be discarded in order to
maximize the likelihood. However, a further constraint is available from equation (40), since
lj = (λj − σ2)1/2 implies that there can be no real solution to the stationary equations of the log-
likelihood if any retained eigenvalue λj < σ2. Since, from (44), σ2 is the average of the discarded
eigenvalues, this condition would be violated if the smallest eigenvalue were not discarded. Now,
combined with the previous result, this indicates that E must be minimized when λq′+1, . . . , λd are
the smallest d− q′ eigenvalues and so L is maximized when λ1, . . . , λq are the principal eigenvalues
of S.

It should also be noted that the log-likelihood L is maximized, with respect to q′, when there are
fewest terms in the sum in (46) which occurs when q′ = q and therefore no lj is zero. Furthermore,
L is minimized when W = 0, which is equivalent to the case of q′ = 0.

A.3 The Nature of Other Stationary Points

If stationary points represented by minor (non-principal) eigenvector solutions are stable maxima
of the likelihood, then local maximization (via an EM algorithm for example) is not guaranteed
to find the principal eigenvectors. We may show, however, that minor eigenvector solutions are in
fact saddle points on the likelihood surface.

Consider a stationary point of the log-likelihood, given by (41), at Ŵ = Uq(Kq−σ2I)1/2R, where
Uq may contain q arbitrary eigenvectors of S and Kq contains either the corresponding eigenvalue
or σ2. We examine the nature of this stationary point by considering a small perturbation of the
form W = Ŵ + εPR, where ε is an arbitrarily small positive constant and P is a d× q matrix of
zeroes except for column W which contains a ‘discarded’ eigenvector uP not contained in Uq. By
considering each potential eigenvector uP individually applied to each column W of Ŵ, we may
elucidate the nature of the stationary point by evaluating the inner product of the perturbation
with the gradient at W (where we treat the parameter matrix W or its derivative as a single
column vector). If this inner product is negative for all possible perturbations, then the stationary
point will be stable and represent a (local) maximum.

So defining G = (∂L/∂W)/N evaluated at W = Ŵ + εPR, then from (34),

CG = SC−1W −W,

= SW(σ2I + WTW)−1 −W,

= SW(σ2I + ŴTŴ + ε2RTPTPR)−1 −W, (48)

since PTŴ = 0. Ignoring the term in ε2 then gives:

CG = S(Ŵ + εPR)(σ2I + ŴTŴ)−1 − (Ŵ + εPR),

= εSPR(σ2I + ŴTŴ)−1 − εPR, (49)

since SŴ(σ2I + ŴTŴ) − Ŵ = 0 at the stationary point. Then substituting for Ŵ gives σ2I +
ŴTŴ = RTKqR, and so

CG = εSPR(RTK−1
q R)− εPR,

⇒ G = εC−1P(ΛK−1
q − I)R, (50)

where Λ is a d × d matrix of zeros, except for the W th diagonal element which contains the
eigenvalue corresponding to uP , such that (Λ)WW = λP . Then the sign of the inner product of
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the gradient G and the perturbation εPR is given by

sign (tr (GTPR)) = sign
(
εtr

[
RT(ΛK−1

q − I)PTC−1PR
])

,

= sign
(
(λP /kW − 1)uT

P C−1uP

)
,

= sign (λP /kW − 1) , (51)

since C−1 is positive definite and where kW is the W th diagonal element value in Kq, and thus in
the corresponding position to λP in Λ. When kW = λW , the expression given by (51) is negative
(and the maximum a stable one) if λP < λW . For λP > λW , Ŵ must be a saddle point.

In the case that kW = σ2, the stationary point will generally not be stable since, from (44), σ2 is
the average of d− q′ eigenvalues, and so λP > σ2 for at least one of those eigenvalues, except when
all those eigenvalues are identical. Such a case is considered shortly.

From this, by considering all possible perturbations P, it can be seen that the only stable maximum
occurs when W comprises the q principal eigenvectors, for which λP < λW , ∀P 6= W .

A.4 Equality of Eigenvalues

Equality of any of the q principal eigenvalues does not affect the maximum likelihood estimates.
However, if thinking in terms of conventional PCA, consideration should be given to the instance
when all the d− q minor (discarded) eigenvalue(s) are equal and identical to at least one retained
eigenvalue. (In practice, particularly in the case of sample covariance matrices, this is unlikely.)

To illustrate, consider the example of extracting two components from data with a covariance
matrix possessing eigenvalues λ1, λ2 and λ2, and λ1 > λ2. In this case, the second principal
axis is not uniquely defined within the minor subspace. The spherical noise distribution defined
by σ2 = λ2, in addition to explaining the residual variance, can also optimally explain the second
principal component. Because λ2 = σ2, l2 in equation (40) is zero, and W effectively only comprises
a single vector. The combination of this single vector and the noise distribution still represents the
maximum of the likelihood, but no second eigenvector is defined.

A.5 An EM Algorithm For PPCA

In the EM approach to PPCA, we consider the latent variables {xn} to be ‘missing’ data. If
their values were known, estimation of W would be straightforward from equation (2) by applying
standard least-squares techniques. However, for a given tn, we don’t know the value of xn which
generated it, but we do know the joint distribution of the observed and latent variables, p(t,x),
and we can calculate the expectation of the corresponding complete-data log-likelihood. In the
E-step of the EM algorithm this expectation, calculated with respect to the posterior distribution
of xn given the observed tn, is computed. In the M-step, new parameter values W̃ and σ̃2 are
determined which maximize the expected complete-data log-likelihood and this is guaranteed to
increase the likelihood of interest,

∏
n p(tn), unless it is already at a local maximum (Dempster,

Laird, and Rubin 1977).

The complete-data log-likelihood is given by:

LC =
N∑

n=1

ln {p(tn,xn)} , (52)

where, in PPCA, from equations (3) and (4)

p(tn,xn) = (2πσ2)−d/2 exp
{
−‖tn −Wxn − µ‖2

2σ2

}
(2π)−q/2 exp

{
−1

2
xT

nxn

}
. (53)
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In the E-step, we take the expectation with respect to the distributions p(xn|tn,W, σ2):

〈LC〉 = −
N∑

n=1

{
d

2
ln σ2 +

1
2
tr (〈xnxT

n〉) +
1

2σ2
‖tn − µ‖2

− 1
σ2
〈xn〉TWT(tn − µ) +

1
2σ2

tr (WTW〈xnxT
n〉)

}
,

(54)

where we have omitted terms independent of the model parameters and

〈xn〉 = M−1WT(tn − µ), (55)

〈xnxT
n〉 = σ2M−1 + 〈xn〉〈xn〉T, (56)

with M = (σ2I+WTW). Note that these statistics are computed using the current (fixed) values
of the parameters, and that (55) is simply the posterior mean from equation (8). Equation (56)
follows from this in conjunction with the posterior covariance of equation (9).

In the M-step, 〈LC〉 is maximized with respect to W and σ2 by differentiating equation (54) and
setting the derivatives to zero. This gives:

W̃ =

[∑
n

(tn − µ)〈xT
n〉

] [∑
n

〈xnxT
n〉

]−1

(57)

σ̃2 =
1

Nd

N∑
n=1

{
‖tn − µ‖2 − 2〈xT

n〉W̃T(tn − µ) + tr
(
〈xnxT

n〉W̃TW̃
)}

(58)

To maximize the likelihood then, the sufficient statistics of the posterior distributions are calculated
from the E-step equations (55) and (56) followed by the maximizing M-step equations (57) and
(58). These four equations are iterated in sequence until the algorithm is judged to have converged.

We may gain considerable insight into the operation of equations (57) and (58) by substituting for
〈xn〉 and 〈xnxT

n〉 from (55) and (56). Taking care not to confuse ‘new’ and ‘old’ parameters, some
further manipulation leads to both the E-step and M-step being combined and re-written as:

W̃ = SW(σ2I + M−1WTSW)−1, and (59)

σ̃2 =
1
d
tr

(
S− SWM−1W̃T

)
, (60)

where S is again given by

S =
1
N

N∑
n=1

(tn − µ)(tn − µ)T. (61)

Note that the first instance of W in equation (60) above is the old value of the weights, while the
second instance W̃ is the new value calculated from equation (59). Equations (59), (60) and (61)
indicate that the data enters into the EM formulation only through its covariance matrix S, as we
would expect.

Although it is algebraically convenient to express the EM algorithm in terms of S, note that care
should be exercised in any implementation. When q ¿ d, it is possible to obtain considerable
computational savings by not explicitly evaluating the covariance matrix, computation of which is
O(Nd2). This is because inspection of (57) and (58) indicates that complexity is only O(Ndq), and
is reflected in (59) and (60) by the fact that S only appears within the terms SW and tr (S), which
may be computed with O(Ndq) and O(Nd) complexity respectively. That is, SW should be com-
puted as

∑
n(tn−µ) {(tn − µ)TW}, as that form is more efficient than {∑n(tn − µ)(tn − µ)T}W,

which is equivalent to finding S explicitly. However, because S need only be computed once in
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the single model case and the EM algorithm is iterative, potential efficiency gains depend on the
number of iterations required to obtain the desired accuracy of solution, as well as the ratio of d to
q. For example, in our implementation of the model using q = 2 for data visualization, we found
that an iterative approach could be more efficient for d > 20.

A.6 Rotational Ambiguity

If W is determined by the above algorithm, or any other iterative method that maximizes the
likelihood (10), then at convergence, WML = Uq(Λq − σ2I)1/2R. If it is desired to find the true
principal axes Uq (and not just the principal subspace) then the arbitrary rotation matrix R
presents difficulty. This rotational ambiguity also exists in factor analysis, as well as in certain
iterative PCA algorithms where it is usually not possible to determine the actual principal axes if
R 6= I (although there are algorithms where the contraint R = I is imposed and the axes may be
found).

However, in probabilistic PCA, R may actually be found since

WT
MLWML = RT(Λq − σ2I)R, (62)

implies that RT may be computed as the matrix of eigenvectors of the q × q matrix WT
MLWML.

Hence, both Uq and Λq may be found by inverting the rotation followed by normalisation of WML.
That the rotational ambiguity may be resolved in PPCA is a consequence of the scaling of the
eigenvectors by (Λq − σ2I)1/2 prior to rotation by R. Without this scaling, WT

MLWML = I, and
the corresponding eigenvectors remain ambiguous. Also, note that while finding the eigenvectors
of S directly requires O(d3) operations, to obtain them from WML in this way requires only O(q3).

B Optimal Least-Squares Reconstruction

One of the motivations for adopting PCA in many applications, notably in data compression, is
the property of optimal linear least-squares reconstruction. That is for all orthogonal projections
x = ATt of the data, the least-squares reconstruction error

E2
rec =

1
N

N∑
n=1

‖tn −BATtn‖2 (63)

is minimized when the columns of A span the principal subspace of the data covariance matrix,
and B = A. (For simplification, and without loss of generality, we assume here that the data has
zero mean.)

We can similarly obtain this property from our probabilistic formalism, without the need to de-
termine the exact orthogonal projection W, by finding the optimal reconstruction of the posterior
mean vectors 〈xn〉. To do this we simply minimize

E2
rec =

1
N

N∑
n=1

‖tn −B〈xn〉‖2, (64)

over the reconstruction matrix B, which is equivalent to a linear regression problem giving

B = SW(WTSW)−1M, (65)

where we have substituted for 〈xn〉 from (55). In general the resulting projection B〈xn〉 of tn is
not orthogonal, except in the maximum-likelihood case, where W = WML = Uq(Λq − σ2I)1/2R,
and the optimal reconstructing matrix becomes

BML = W(WTW)−1M, (66)
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and so

t̂n = W(WTW)−1M〈xn〉, (67)

= W(WTW)−1WTtn, (68)

which is the expected orthogonal projection. The implication is thus that in the data compression
context, at the maximum likelihood solution, the variables 〈xn〉 can be transmitted down the chan-
nel and the original data vectors optimally reconstructed using equation (67) given the parameters
W and σ2. Substituting for B in equation (64) gives E2

rec = (d− q)σ2 and the noise term σ2 thus
represents the expected squared reconstruction error per ‘lost’ dimension.

C EM for Mixtures of Probabilistic PCA

In a mixture of probabilistic principal component analysers, we must fit a mixture of latent variable
models in which the overall model distribution takes the form

p(t) =
M∑

i=1

πip(t|i), (69)

where p(t|i) is a single probabilistic PCA model and πi is the corresponding mixing proportion.
The parameters for this mixture model can be determined by an extension of the EM algorithm.
We begin by considering the standard form which the EM algorithm would take for this model
and highlight a number of limitations. We then show that a two-stage form of EM leads to a more
efficient algorithm.

We first note that in addition to a set of xni for each model i, the missing data includes variables
zni labelling which model is responsible for generating each data point tn. At this point we can
derive a standard EM algorithm by considering the corresponding complete-data log likelihood
which takes the form

LC =
N∑

n=1

M∑

i=1

zni ln{πip(tn,xni)}. (70)

Starting with ‘old’ values for the parameters πi, µi, Wi and σ2
i we first evaluate the posterior

probabilities Rni using (21) and similarly evaluate the expectations 〈xni〉 and 〈xnixT
ni〉:

〈xni〉 = M−1
iWT

i (tn − µi), (71)

〈xnixT
ni〉 = σ2

i M
−1

i + 〈xni〉〈xni〉T, (72)

with Mi = σ2
i I + WT

i Wi.

Then we take the expectation of LC with respect to these posterior distributions to obtain

〈LC〉 =
N∑

n=1

M∑

i=1

Rni

{
ln πi − d

2
ln σ2

i −
1
2
tr (〈xnixT

ni〉)

− 1
2σ2

i

‖tni − µi‖2 +
1
σ2

i

〈xni〉TWT
i (tn − µi)

− 1
2σ2

i

tr (WT
i Wi〈xnixT

ni〉)
}

, (73)

where 〈·〉 denotes the expectation with respect to the posterior distributions of both xni and zni

and terms independent of the model parameters have been omitted. The M-step then involves
maximizing (73) with respect to πi, µi, σ2

i and Wi to obtain ‘new’ values for these parameters.



Mixtures of Probabilistic Principal Component Analysers 29

The maximization with respect to πi must take account of the constraint that
∑

i πi = 1. This
can be achieved with the use of a Lagrange multiplier λ (see Bishop 1995) and maximizing

〈LC〉+ λ

(
M∑

i=1

πi − 1

)
. (74)

Together with the results of maximizing (73) with respect to the remaining parameters, this gives
the following M-step equations

π̃i =
1
N

∑
n

Rni (75)

µ̃i =
∑

n Rni(tni − W̃i〈xni〉)∑
n Rni

(76)

W̃i =

[∑
n

Rni(tn − µ̃i)〈xni〉T
] [∑

n

Rni〈xnixT
ni〉

]−1

(77)

σ̃2
i =

1
d

∑
n Rni

{∑
n

Rni‖tn − µ̃i‖2

−2
∑

n

Rni〈xni〉TW̃T
i (tn − µ̃i) +

∑
n

Rnitr
(
〈xnixT

ni〉W̃T
i W̃i

)}
(78)

where the symbol ˜ denotes ‘new’ quantities that may be adjusted in the M-step. Note that
the M-step equations for µ̃i and W̃i, given by (76) and (77), are coupled, and so further (albeit
straightforward) manipulation is required to obtain explicit solutions.

In fact, simplification of the M-step equations, along with improved speed of convergence, is possible
if we adopt a two-stage EM procedure as follows. The likelihood function we wish to maximize is
given by

L =
N∑

n=1

ln

{
M∑

i=1

πip(tn|i)
}

. (79)

Regarding the component labels zni as missing data, and ignoring the presence of the latent x
variables for now, we can consider the corresponding expected complete-data log likelihood given
by

L̂C =
N∑

n=1

M∑

i=1

Rni ln {πip(tn|i)} (80)

where Rni represent the posterior probabilities (corresponding to the expected values of zni) and
are given by (21). Maximization of (80) with respect to πi, again using a Lagrange multiplier,
gives the M-step equation (22). Similarly, maximization of (80) with respect to µi gives (23). This
is the first stage of the combined EM procedure.

In order to update Wi and σ2
i we seek only to increase the value of L̂C and not actually to maximize

it. This corresponds to the generalised EM (or GEM) algorithm. We do this by considering L̂C as
our likelihood of interest and, introducing the missing xni variables, we perform one cycle of the
EM algorithm, now with respect to the parameters Wi and σ2

i . This second stage is guaranteed
to increase L̂C , and therefore L as desired.

The advantages of this approach are two-fold. Firstly, the new values µ̃i calculated in the first
stage are utilised to compute the sufficient statistics of the posterior distribution of xni in the
second stage using (71) and (72). By using updated values of µi in computing these statistics, this
leads to improved convergence speed.

A second advantage is that for the second stage of the EM algorithm, there is a considerable
simplification of the M-step updates, since when (73) is expanded for 〈xni〉 and 〈xnixT

ni〉, only
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terms in µ̃i (and not µi) appear. By inspection of (73) we see that the expected complete-data
log likelihood now takes the form

〈LC〉 =
N∑

n=1

M∑

i=1

Rni

{
ln π̃i − d

2
ln σ2

i −
1
2
tr (〈xnixT

ni〉)

− 1
2σ2

i

‖tni − µ̃i‖2 +
1
σ2

i

〈xT
ni〉WT

i (tn − µ̃i)

− 1
2σ2

i

tr (WT
i Wi〈xnixT

ni〉)
}

. (81)

Now when we maximize (81) with respect to Wi and σ2
i (keeping µ̃i fixed), we obtain the much

simplified M-step equations:

W̃i = SiWi(σ2
i I + M−1

iWT
i SiWi)−1, (82)

σ̃2
i =

1
d
tr

(
Si − SiWiM−1

iW̃T
i

)
, (83)

where

Si =
1

π̃iN

N∑
n=1

Rni(tn − µ̃i)(tn − µ̃i)
T. (84)

Iteration of equations (21)–(23) followed by equations (82) and (83) in sequence is guaranteed to
find a local maximum of the likelihood (19).

Comparison of equations (82) and (83) with those of (59) and (60) earlier shows that the updates for
the mixture case are identical to those of the single PPCA model, given that the local responsibility-
weighted covariance matrix Si is substituted for the global covariance matrix S. Thus at stationary
points, each weight matrix Wi contains the (scaled and rotated) eigenvectors of its respective Si,
the local covariance matrix. Each sub-model is then performing a local PCA, where each data
point is weighted by the responsibility of that sub-model for its generation, and a soft partitioning,
similar to that introduced by Hinton et al. (1997), is automatically effected.

Given the established results for the single PPCA model, there is no need to use the iterative
updates (82) and (83), since Wi and σ2

i may be determined by eigen-decomposition of Si, and
the likelihood must still increase unless at a maximum. However, as discussed in Appendix A.5,
the iterative EM scheme may offer computational advantages, particularly for q ¿ d. In such a
case, the iterative approach of equations (82) and (83) can be used, taking care to evaluate SiWi

efficiently as
∑

n Rni(tn− µ̃i) {(tn − µ̃i)TWi}. Note that in the mixture case, unlike for the single
model, Si must be re-computed at each iteration of the EM algorithm, as the responsibilities Rni

will change.

As a final computational note, it might appear that the necessary calculation of p(t|i) would
require inversion of the d × d matrix C, an O(d3) operation. However, (σ2I + WWT)−1 =
{I − W(σ2I + WTW)−1WT}/σ2 and so C−1 may be computed using the already-calculated
q × q matrix M−1.


