
SparseBayes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An Efficient Matlab Implementation of the
Sparse Bayesian Modelling Algorithm (Version 2.0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author: Michael E. Tipping
Date: March 12, 2009
Contact: mail@miketipping.com

www.vectoranomaly.com



SparseBayes z Acknowledgements z 1

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This document is intended as a basic user-guide and implementation overview for the SparseBayes
Version 2.0 software package for Matlab, available from http://www.relevancevector.com.

Copyright & Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The SparseBayes software described by this document is Copyright 2009, Vector Anomaly Ltd.

Furthermore, the SparseBayes software is supplied subject to version 2 of the ”GNU General Public
License” (detailed in the accompanying file “licence.txt”).

SparseBayes is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

SparseBayes is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with SparseBayes in the
accompanying file “licence.txt”; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA.

Software Status and Bug Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

While SparseBayes has undergone some considerable testing (under Matlab Version 7.4, R2007a,
Win32), the status of the current Version 2.0 release would best be considered as “beta”. Please
report any problems arising with the use of the software to the author at mail@miketipping.com.

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The author would like to thank Mark Hatton, Anita Faul, Ian Nabney, Arnulf Graf and Gavin
Cawley for their assistance in the early development of this code.



SparseBayes z 1 z About the SparseBayes Software z 2

1. About the SparseBayes Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 The SparseBayes Version 2.0 Package

This document briefly summarises “Version 2” of the SparseBayes software package, designed
to run within the Matlab environment (see http://www.mathworks.com). The latest version of
SparseBayes, along with other explanatory materials, should be available from:

http://www.relevancevector.com

This documentation refers specifically to the Version 2.0 release of SparseBayes. Version 2.0 is
the first release of an extended implementation of the algorithm described in the paper “Fast
Marginal Likelihood Maximisation for Sparse Bayesian Models” [4].

Note that SparseBayes “Version 1” is an older, simpler, baseline, implementation, which is still
available for reference at the above web-site. The software described in this document is intended
to supercede that earlier version.

1.2 A Brief Overview of the “Sparse Bayesian” Model

The concept of the “sparse Bayesian” model was originally introduced in ref. [1], and later de-
scribed in more comprehensive detail in ref. [2]. The reader who is unfamiliar with the model
may wish to initially consult an introductory article which is available as ref. [3]. Download-able
versions of these referenced articles are available at www.relevancevector.com.

In summary here, the “sparse Bayesian model” is essentially a Bayesian treatment of a generalised
linear predictive model with a specific prior over the parameters which favours sparse prediction
functions.

1.2.1 The underlying model
For example, consider a predictive modelling task where there is a set of ‘input’ data samples
X = {xn} with corresponding desired ‘target’ values t = {tn}, n = 1 . . . N. The objective is to
find an underlying functional model y(x) that “predicts” t well given x, and is not compromised
by noisy, real-world, data.

One possible predictor y(x) would be a “generalised linear” one:

y(x; w) =
M

∑
m=1

wmϕm(x),

where w = (w1, w2, . . . , wM) is the vector of adjustable parameters. This model is therefore said
to be “linear in the parameters”, which conveys a number of analytic advantages. At the same
time, by choosing the “basis functions” ϕm(x) to be nonlinear, y(x; w) may be nonlinear too. If M
is large, then this type of model is potentially very flexible, and providing the computational and
statistical complexity of the model is appropriately managed, it can be very effectively applied to
a wide range of problems.

The sparse Bayesian methodology has been designed to be a principled and practically effective
mechanism for managing this computational and statistical complexity. The key to the approach
is the definition of a hyper-parameterised prior over the model parameters of the form:

p(w|α) =
M

∏
m=1

p(wm|αm) ∝
M

∏
m=1

α1/2
m exp

(
−αm

2
w2

m

)
.

Analysis shows that this type of prior ultimately favours models that both fit the data well and,
in particular, are sparse [2]. That is, the prior locates most of its probability mass at wm = 0.

Given the model and its prior, the SparseBayes software computes the posterior distribution over
the hyperparameters αm given the data, and returns their most-probable values by maximising



SparseBayes z 1 z About the SparseBayes Software z 3

the marginal likelihood function. This leads to a posterior distribution over the parameters wm
where many are (mathematically) set to zero. As a result, the predictive models derived by the
algorithm will, in most cases, be sparse. In practical terms then, the generalised linear model
predictor y(x; w) will typically comprise very few non-zero wm and will thereby incorporate a
compact set of basis functions only.

1.2.2 An algorithmic perspective
As a result of the choice of prior, the model described above also exhibits some attractive mathe-
matical properties from an algorithmic perspective, and these are exploited by the accompanying
SparseBayes Version 2.0 software.

A key element of the SparseBayes algorithm is the manner in which it optimises the underlying
marginal likelihood function with respect to all the hyperparameters {αm}. Although on paper
this is a continuous joint optimisation procedure, the algorithm has the facility to perform discrete
“addition” and “deletion” of individual basis functions from the underlying model in a princi-
pled way, as discussed in ref. [4]. The optimisation algorithm implemented by SparseBayes is
essentially a refined version of that outlined in Section 4 of that paper.

1.3 Guide to this Document

The remainder of this document is structured as follows:

Section 2: A listing and summary of the contents of the SparseBayes Version 2.0 distribution.

Section 3: A “Quick start” introduction to the use of the SparseBayes software via the accompa-
nying SparseBayesDemo demonstration program.

Section 4: A guide to the use of SparseBayes and other principal functions in the package.

Section 5: Some notes concerning aspects of the implementation that may be of interest.

Section 6: A brief overview of the support functionality in the package.



SparseBayes z 2 z Package Summary: SparseBayes 2.0 z 4

2. Package Summary: SparseBayes 2.0 . . . . . . . . . . . . . . . . . . . . . . . .

A listing and brief description of each file in the SparseBayes distribution is given in the below ta-
ble. The relevant functionality in these files is described in more detail later in this document, and
reasonably comprehensive information for most functions can also be obtained via the standard
MATLAB “help” interface. Note that the files described under “Core User Functionality” below
are intended for direct application by the end-user, and are more comprehensively documented
herein.

z Example / Demonstration (Section 3)

SparseBayesDemo.m An example function to illustrate the use of SparseBayes.

z Core User Functionality (Sections 4 and 5)

SparseBayes.m The main SparseBayes functionality: the hyperparameter
re-estimation algorithm for a model with arbitrary basis.

SB2 UserOptions.m Primary user-selectable options.

SB2 ParameterSettings.m User-adjustable initial parameter setting over-rides.

SB2 ControlSettings.m Various default parameter settings to control the internal
operation of the main algorithm.

z Support Functionality (Section 6)

Algorithmic

SB2 Initialisation.m Initialise everything for the SparseBayes algorithm.

SB2 PreProcessBasis.m Normalise the basis (design) matrix.

SB2 Likelihoods.m Conveniently encapsulate different likelihood types.

SB2 FullStatistics.m Computes all relevant statistics in explicit form for the
SparseBayes algorithm.

SB2 PosteriorMode.m Posterior-mode finding function for the non-Gaussian
likelihood case, called by SB2 FullStatistics.

SB2 Sigmoid.m Sigmoid link function for Bernoulli likelihood.

Diagnostics

SB2 Diagnostic.m Flexible diagnostic output. Allows control over verbosity
of output and writing to a log file.

SB2 FormatTime.m Simple generic support function to pretty-print timings.

Documentation

Readme.txt Standard “readme” information file.

licence.txt Licence file (GPL Version 2).

SB2 Manual.pdf This document.



SparseBayes z 3 z Quick Start z 5

3. Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The SparseBayesDemo program provides a basic illustration of how the SparseBayes software may
be used. It gives an example of the application of both “regression” and “classification” models
(i.e. utilising Gaussian and Bernoulli likelihoods respectively) in both one and two dimensions.
The functional models employed are nonlinear and based on fixed “Gaussian” basis (kernel) func-
tions. The data used is derived synthetically from the generative model itself using a sparse subset
of the possible basis functions, with added noise appropriate to the likelihood function in use.

To see the main SparseBayes algorithm at work, type the following at the Matlab prompt:

>> SparseBayesDemo(’Gaussian’,1)

This should give the results below, illustrating the data, the generative function, the inferred
model (posterior-mean) predictor, along with the inferred set of relevant basis functions (which
should be sparse).

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15
Generated data (100 points)

0 20 40 60 80
−5

−4

−3

−2

−1

0
x 10

4Log marginal likelihood trace

Actual noise:   0.95594

Inferred noise: 0.96262

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15
Generative function and linear model

 

 
Actual
Model

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15
Data and predictor

0 20 40 60 80 100
−10

−5

0

5

10

15
Inferred weights (12)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Well−determinedness (gamma)

A similar example in two dimensions can be obtained by running:

>> SparseBayesDemo(’Gaussian’,2) .

The data for the above demonstrations was synthesised with additive Gaussian noise of a fixed
“noise-to-signal” fraction (relative to the standard deviation of the noise-free data). This defaulted
to 0.2. An optional third parameter to SparseBayesDemo allows this to be varied. For example,
the following two examples may be be of interest to view:

>> SparseBayesDemo(’Gaussian’,1,0.01)
>> SparseBayesDemo(’Gaussian’,1,1)

For examples of “classification”, try:

>> SparseBayesDemo(’Bernoulli’,1)
>> SparseBayesDemo(’Bernoulli’,2)



SparseBayes z 4 z Using SparseBayes: A Basic Guide z 6

4. Using SparseBayes: A Basic Guide . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 Overview: User-Level Functionality

The “user-level” functionality in SparseBayes is to be found in four principal functions:

n SparseBayes: implementation of the core “sparse Bayesian” model inference algorithm

n SB2 UserOptions: an interface to allow the user to specify a range of options that modify
the behaviour of the algorithm and underlying model

n SB2 ParameterSettings: an interface to facilitate initial settings of model parameters and
hyperparameters

n SB2 ControlSettings: hard-wired specifications of certain algorithmic control parameters
which may be modified (in the file) by the interested user

Primarily, only SparseBayes and SB2 UserOptions are explicitly required, as long as the user is
happy with the default initial parameter settings (from SB2 ParameterSettings) and algorithmic
settings (in SB2 ControlSettings). Inspection of the source code of the demonstration function
SparseBayesDemo introduced in the previous section will hopefully illustrate how the core func-
tions might be called, with more specific detail given in the following subsections.

4.2 Running the Main Inference Algorithm

In its simplest form, SparseBayes may be called as:

>> SparseBayes(’Gaussian’, BASIS, Targets)

This assumes that argument BASIS is an N × M basis (or design) matrix, where BASIS(n,m) rep-
resents the value of input variable, or basis function, m (of M) corresponding to example datum
n (of N). The argument Targets is the corresponding N × 1 vector of desired output values.

The first argument specifies the likelihood model to use. Currently, options are:

n ’Gaussian’: noise model for real-valued regression (interpolation, function approximation)

n ’Bernoulli’: standard likelihood for binary classification (pattern recognition)

n ’Poisson’: likelihood model for positive integer regression (“experimental” at present)

4.3 Configuring SparseBayes

4.3.1 General options and settings overview
The default operation of SparseBayes is designed to be modified in three ways:

n User Options: these are options that the user is likely to want to modify, via a call to
SB2 UserOptions, on a per-problem basis. Example options are the number of iterations
to run for and the level of diagnostic output desired. See Section 4.3.3 shortly.

n Initial Parameter Settings: SparseBayes automatically obtains sensible default values for α,
β and the initial basis subset via SB2 ParameterSettings (see Section 4.3.4). These defaults
may be acceptable in most cases, but the user may easily over-ride them to suit a particular
problem if desired. This functionality would also be applicable if the algorithm was to
be “restarted” with the previously-learned parameters from an earlier call to SparseBayes
(perhaps incorporating some alternative basis functions the second time around).

n Algorithmic Control Settings: although not explicitly exposed to the user, there are a num-
ber of parameters which control how various aspects of the algorithm operate “under the
hood”. These are are defined in SB2 ControlSettings.m which can be thought of as an
editable configuration file. See Section 4.3.5 for some further detail.



SparseBayes z 4 z Using SparseBayes: A Basic Guide z 7

4.3.2 The configuration interfaces
The functions SB2 UserOptions and SB2 ParameterSettings both behave in a similar manner
and offer a similar interface to the user. Each returns a single structure (OPTIONS and SETTINGS
respectively) whose fields define appropriate default values for the relevant properties. These
defaults can be seen by calling the functions with no arguments, for example:

>> OPTIONS = SB2_UserOptions

OPTIONS =

fixedNoise: 0
freeBasis: []
iterations: 10000

time: 10000
monitor: 0

diagnosticLevel: 0
diagnosticFID: 1

diagnosticFile_: []
callback: 0

callbackFunc: []
callbackData: {}

Some, or all, of these defaults may be over-ridden by the user in their code by supplying the
appropriate set of property-value argument pairs. For example:

>> OPTIONS = SB2_UserOptions(’Iterations’, 1000,...
’DiagnosticLevel’, 2,...
’Monitor’, 10);

The range of applicable properties for SB2 UserOptions is detailed in Section 4.3.3 shortly. Note
that property names are not case-sensitive.

The function SB2 ParameterSettings operates analogously to SB2 UserOptions but incorporates
fields designed for the setting of initial values of parameters and hyperparameters. The relevant
properties for SB2 ParameterSettings are detailed in Section 4.3.4.

Once both user options and initial parameter settings have been specified, the relevant structures
may be passed as optional parameters to SparseBayes. For example, given prior definitions of
BASIS and Targets, the following three statements are sufficient to run the full SparseBayes algo-
rithm:

>> OPTIONS = SB2 UserOptions(’Iterations’,1000)
>> SETTINGS = SB2 ParameterSettings(’NoiseStd’,0.1)
>> SparseBayes(’Gaussian’, BASIS, Targets, OPTIONS, SETTINGS)

Unlike the “user options” (OPTIONS) and “initial parameter settings” (SETTINGS) discussed above,
there is no functional user-interface to allow direct adjustment of “algorithmic control settings”.
Instead, these are “hard-coded” in the file SB2 ControlSettings.m. These settings may be changed
via direct editing of the file if desired. See Section 4.3.5 below and the comments in the file itself
for more information.



SparseBayes z 4 z Using SparseBayes: A Basic Guide z 8

4.3.3 SB2 UserOptions: valid properties
The default values for the various user-determined options (the fields of the OPTIONS structure)
were shown in the earlier example. Those fields may be modified by passing the appropriate
property-value pairs to SB2 UserOptions, as detailed in the following table.

Property Type Description

’Iterations’ Integer Maximum number of iterations to run for.

’Time’ String Maximum time to run for. Specified as a string such
as ’45 seconds’, ’2.5 minutes’ or ’1 hour’.

’DiagnosticLevel’ Integer Specifies the verbosity of output from SparseBayes.
Currently understood values range from 0 (no out-
put) to 4 (ultra-verbose). The SparseBayesDemo ex-
ample defaults to a “medium” level of 2.

’DiagnosticFile’ String Name of a log file to output diagnostics to (instead
of the Matlab console).

’Monitor’ Integer Specifies after how many iterations the evolving
model statistics are summarised. Only effective if
’DiagnosticLevel’ is 2 or greater.

’FixedNoise’ Boolean If true, the noise estimate is not updated in the
Gaussian likelihood case (i.e. β is fixed to the value
set by SB2 ParameterSettings).

’FreeBasis’ [Integer] Indices of basis vectors (columns of BASIS) that are
considered “free”. That is, they are not subject to the
sparse Bayesian prior. See Section 5.3.

’Callback’ String Name of function to call at each iteration during the
algorithm. See Section 5.5.

’CallbackData’ Cell array List of additional data variables to pass to the call-
back function.

4.3.4 SB2 ParameterSettings: valid properties
Valid properties for initial parameter specification are given in the below table.

Property Type Description

’Beta’ Double Initial setting for inverse noise variance β for Gaus-
sian likelihood models.

’NoiseStd’ Double Initial setting for noise standard deviation σ for
Gaussian likelihood models. Note that β = 1/σ2

and if both ’Beta’ and ’NoiseStd’ are specified,
the value of ’Beta’ will take priority.

’Relevant’ [Integer] Vector of indices of initially relevant basis vectors
(column indices of BASIS).

’Weights’ [Double] Vector of initial weight values corresponding to the
’Relevant’ basis vectors.

’Alpha’ [Double] Vector of initial values for the hyperparameters α,
again corresponding to ’Relevant’.

Of the latter three properties, if ’Relevant’ is specified, it is not necessary to define correspond-
ing values for either ’Alpha’ or ’Weights’ (these will be “sensibly” initialised if omitted). How-
ever, if one or both of ’Alpha’ or ’Weights’ are defined, they must be of matching length to
’Relevant’ (which therefore must also have been specified).



SparseBayes z 4 z Using SparseBayes: A Basic Guide z 9

4.3.5 SB2 ControlSettings: configuration summary
This function returns a default structure (CONTROLS) that encapsulates a number of parameters to
control the internal workings of the main SparseBayes algorithm. Unlike SB2 UserOptions and
SB2 ParameterSettings, there is no explicit functionality in SB2 ControlSettings to allow user
over-riding of the defaults. These must be changed by editing the file if desired. The following
settings are defined in SB2 ControlSettings:

n Termination tolerances.

n Priority control for “add” and “delete” updates.

n How the Gaussian noise estimates are updated.

n How often the posterior mode approximation is updated in the non-Gaussian case.

n Whether “redundant” basis functions are explicitly handled.

See the comments in the SB2 ControlSettings.m file for more details.



SparseBayes z 5 z Using SparseBayes: Implementation Notes z 10

5. Using SparseBayes: Implementation Notes . . . . . . . . . . . . . . . . . .

This section describes a number of elements of the implementation of the SparseBayes software
that may be relevant to the interested user.

5.1 Specifying the Model Basis

Running the SparseBayes inference function requires that an appropriate model basis matrix (the
argument BASIS) for the problem at hand is set up in advance. The earlier “SparseBayes Version
1.1” software included specialised functionality (in SB1 RVM) to implement a “kernel” basis model
(i.e. a “relevance vector machine”). The emphasis of the new “Version 2” SparseBayes package
described here is that it is “general purpose”, and as such, no explicit functionality to define
specific model bases is included by default. It is left to the user to pre-compute an appropriate
BASIS for their problem as desired (although there is no reason not to modify and re-use code
from Version 1.1 for that purpose).

Ultimately, the matrix BASIS matrix may be derived from arbitrary numbers and types of basis
functions ϕm(x). Noting that BASIS(n,m) = ϕm(xn), some examples might be:

n Bias: A single constant vector with ϕ(xn) = 1, used to implement a threshold or offset.

n Linear: The design matrix is effectively the data matrix, ϕm(xn) = xnm.

n Nonlinear:

z Fixed. For example, univariate polynomials, ϕm(xn) = xm
n .

z Data-parameterised. For example, “Gaussian data-centred” kernel functions, ϕm(xn) =
exp{−η∥xm − xn∥2}. See the SparseBayesDemo function for an example of these.

Given care, there is no reason not to combine different basis types together: e.g. a practical model
might define BASIS as a concatenation of a bias, a linear basis and a Gaussian kernel basis.

5.2 Initialisation

Unless the user specifies a particular “starting” basis via SB2 ParameterSettings, the default
initialisation of the model will typically be a single basis vector (but see also Section 5.3 next).
This is chosen to be the basis vector (column of BASIS) with the largest inner-product with (i.e.
is best aligned with) the target vector t (“linearised” in the non-Gaussian case). In respect of
computing inner-products of basis vectors, note that SB2 PreProcessBasis normalises each basis
vector to unit length for the purposes of all internal computations within SparseBayes.

5.3 Incorporating a “Free” Basis

One of the configuration options offered by SB2 UserOptions is the facility to specify a “free”
basis via the ’FreeBasis’ property. This defines a vector of indices m for which the corresponding
prior over wm is to be “inactive”, or equivalently, for which αm is set to zero and remains fixed.
Such parameters will therefore be fitted to the data without penalty, and their corresponding basis
functions ϕm(x) will always be incorporated in the model.

A primary motivation for this functionality is to accommodate a “bias”, or fixed offset/threshold,
parameter (where ϕm(xn) = 1 for all n). Although it seems to be conventional in the literature to
apply a Bayesian treatment to the bias parameter in most models, this implies the outcome of any
inference is not shift-invariant with respect to the targets, which ought to be considered undesir-
able in many applications. (Note that the sparse Bayesian model is implicitly scale-invariant with
respect to t already.)

With reference to the discussion on initialisation above, if a ’FreeBasis’ is specified by the user,
that particular basis (which may be only the bias vector) will be used to initialise the model. This
is in addition to any others that may also be explicitly specified by the user (via the ’Relevant’
property in SB2 ParameterSettings).



SparseBayes z 5 z Using SparseBayes: Implementation Notes z 11

5.4 Basis Vector Alignment

One of the “under the hood” extensions of the SparseBayes algorithm, introduced in response to
early user feedback, is the notion of basis function “alignment tests” (which can be turned on and
off via the boolean CONTROLS.BasisAlignmentTest in SB2 ControlSettings). This is a heuristic
that has been designed to finesse the issue of multiple identical (or indistinguishable) basis vectors
within a model.

One of the features of the sparse Bayesian modelling approach is that if two basis functions, such
as ϕj(x) and ϕk(x), are similar, then it is unlikely that both will be utilised in the final model.
In most cases, one will be deemed irrelevant. This general behaviour can be clearly seen in the
SparseBayesDemo examples. However, if the basis functions are not just similar but are identical,
such that ϕj(x) = ϕk(x), then if either is ultimately deemed relevant under the model, both basis
functions will be incorporated to some extent (as there is no way to tell them apart). In such a
case, wj + wk will be equal to some constant value, although their individual values are essentially
arbitrary. This can also occur if ϕj(x) and ϕk(x) are not identical but are similar enough to be
numerically indistinguishable by the algorithm.

To work around this, there is a parameter CONTROLS.AlignmentMax, defined to be slightly less
than unity, which specifies a maximum allowable value of the inner-product between any two
basis functions in the model (i.e., it is a measure of “maximum allowed similarity”). This imposes
a constraint that as long as ϕj(x) is in the model, then ϕk(x) can never be “added” if:

N

∑
n=1

ϕj(xn).ϕk(xn) > CONTROLS.AlignmentMax

Since the basis vectors are pre-normalised (transparently to the user), ∑N
n=1 ϕj(xn).ϕk(xn) = 1

when ϕj(x) and ϕk(x) are identical. Note that this does not exclude the possibility of ϕj(x) being
“deleted” at some point and ϕk(x) then being subsequently “added” (if doing so would increase
the marginal likelihood of course).

This alignment-checking functionality is activated by default in the current implementation, with
CONTROLS.AlignmentMax set to 0.999. Switching off CONTROLS.BasisAlignmentTest should not
have a noticeable effect on the ultimate predictive model output, but may result in mildly ex-
tended optimisation time and a less sparse final predictor.

5.5 The User-Configurable Callback Function

The main SparseBayes function includes the provision to call an arbitrary, external, user-specified
function via the ’Callback’ property of SB2 UserOptions. This callback function is called once
at the start of the main optimisation, and once during each iteration thereafter, and each time
passes a range of potentially useful data across, such as the current values of the parameters,
hyperparameters, active basis set etc.

Effectively, this passes control to the user’s own function during each cycle of the algorithm,
enabling, for example, an ongoing graphical update of the state of the model, perhaps for demon-
stration purposes. The callback function should be of the form:

UserFunction(ITERATION, ACTION, LOGML, USED, WEIGHTS, SIGMA,...
ALPHA, BETA, GAMMA, PHI, VARARGIN)

Here, the variable-length argument list that is passed (as VARARGIN) is that associated with the
’CallbackData’ property that can be set by SB2 UserOptions.

The next update release of SparseBayes will include an additional demonstration program that
will illustrate how this “callback” functionality may usefully be exploited.



SparseBayes z 6 z Brief Summary of Other Functions z 12

6. Brief Summary of Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For the sake of completeness, “support functions” from the SparseBayes 2.0 package, not necessar-
ily designed for direct end-use, are briefly described here. Again, there is also some basic “help”
text available via the usual Matlab interface.

SB2 Initialisation

This function is called before the main loop within SparseBayes and does the following:

n Calls SB2 PreProcessBasis to normalise the basis matrix.

n Validates the choice of likelihood.

n Initialises β in the Gaussian likelihood case if not pre-specified. The heuristic here is to set
β = 1/σ2 where σ is initialised to be 10% of the standard deviation of the targets tn (i.e.
there is an assumed initial SNR of 10:1).

n If no initial basis is specified (and there is no “free” basis), an initial model basis Φ is deter-
mined. This is heuristically chosen to be the single basis vector that is best aligned with the
(linearised) target vector t.

n Given the initial basis, appropriate “reasonable” initialisations for parameters µ and hyper-
parameters α are calculated.

SB2 PreProcessBasis

Internally normalises the basis vectors (each column of Φ) to unit length. This should improve
numerical robustness, and simplifies a number of internal calculations. The function returns the
original basis vector lengths such that the weights (and other dependent parameters) can be ap-
propriately rescaled at the termination of the algorithm, consistent with the scale of the originally
supplied basis.

SB2 Likelihoods

A convenience function to encapsulate the likelihood specification for the model and to allow for
future expandability.

SB2 FullStatistics

This function calculates the full posterior statistics given the current settings of the hyperparam-
eters (α, β). Variables computed are:

n Parameter (weight) posterior mean and covariance, µ and Σ.

n “Sparsity” and “quality” factors Sm, Qm, sm and qm, for all basis functions.

n The key “relevance factor” q2
m − sm for all basis functions.

n The log-likelihood and the “well-determinedness” (γm) values.

All the above can be calculated by more efficient “update” formulae within SparseBayes (see
Appendix A of ref. [4]). However, in the Gaussian likelihood case when the noise estimate (β)
has been updated, and more generally in the non-Gaussian case, it is necessary to calculate the
statistics “in full” via this function.

SB2 PosteriorMode

Called by SB2 FullStatistics to find the mode of the posterior distribution over parameters, as
the basis for the Laplace approximation in the non-Gaussian likelihood case. The optimisation
uses a variable-step-length second-order gradient-based (Newton) method.



SparseBayes z 6 z Brief Summary of Other Functions z 13

SB2 Sigmoid

Simple generic function to compute the “logistic sigmoid” link function for the Bernoulli likeli-
hood model: f (x) = 1/(1 + e−x).

SB2 Diagnostic

The function facilitates the convenient output of diagnostic information to both the Matlab con-
sole and/or to a file. Messages have a specific “importance level” and can be filtered out by an
appropriate setting of the diagnostic level (see Section 4.3.3). For example, including:

>> OPTIONS = SB2 UserOptions(’DiagnosticLevel’,1,’DiagnosticFile’,’myfile.log’)

in the options selections will ensure that only “level-0” and “level-1” messages are output, and
these will be written to the specified log file.

SB2 FormatTime

Convenient function to output timing information in a user-friendly format.



SparseBayes z REFERENCES z 14

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1] M. E. Tipping. The Relevance Vector Machine. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors,

Advances in Neural Information Processing Systems 12, pages 652–658. MIT Press, 2000.

[2] M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning
Research, 1:211–244, 2001.

[3] M. E. Tipping. Bayesian inference: An introduction to principles and practice in machine learning. In
O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures on Machine Learning, pages 41–62.
Springer, 2004.

[4] M. E. Tipping and A. C. Faul. Fast marginal likelihood maximisation for sparse Bayesian models. In
C. M. Bishop and B. J. Frey, editors, Proceedings of the Ninth International Workshop on Artificial Intelligence
and Statistics, Key West, FL, Jan 3-6, 2003.


